1 Henosepiilachna argus (Geoffroy) (Coccinellidae, Epilachninae), a phytophagous ladybird new to the U.K., breeding at Molesey, Surrey I. S. Menzies & B. M. Spooner
5 Status and identification of Brachyaspis cikiil Laczi (Carabidae) in Britain H. Mendel & M. G. Telfer
9 The intertidal cossid weevil Pselactus spadix (Herbst) (Curculionidae) in England and Wales P. Oevering, B. J. Matthews & A. J. Pitman
15 A review of Longitarsus nigerinus (Gyllenhal) (Chrysomelidae) records from the British Isles R. G. Booth
19 Eridge Park, E. Sussex, a little-known site for saproxylic Coleoptera B. Levy
25 Records of rare and notable beetle species from riverine sediments in Scotland and northern England M. D. Eyre, M. L. Luff & D. A. Lott

Notes
4 Cymindis acicularis (Fabricius) (Carabidae) in Somerset A. J. Prince
14 The identification of Polydrusus splendidus (Herbst) (Curculionidae) - errors in current keys M. G. Morris
24 Aegialia sabuleti (Panzer) (Scarabaeidae) in Surrey J. Denton
39 Scutellar variability in the Quadruus boops complex (Staphylinidae) M. L. Luff & J. A. Owen
40 Aphaniuscus pusillus (Olivier) (Buprestidae) new to Gloucestershire K. N. A. Alexander
41 The Corsham records for Athous campyloides Newman (Elateridae) K. N. A. Alexander
42 Some scarce beetles in Kent K. Chad
43 Philhydra falcata (Sharp) (Staphylinidae) new to Ireland R. Anderson
44 Cantharis fusca Linnaeus (Cantharidae) rediscovered in Yorkshire K. N. A. Alexander
45 Chrysomela oricula (Muller, O.F., 1776) (Chrysomelidae) new to West Lothian A. J. Ramsay

Letters
45 Response to 'The changing status of British Cantharidae' J. Bratton
46 Reply to John Bratton's letter K. Alexander
47 Subscribers' Notices
48 Literature Notices

Cover: Atelespsis opaca (Linnaeus) (Silphidae) R. S. Key

Henosepiilachna argus, a phytophagous ladybird new to the U.K.
Status and identification of Brachyaspis cikiil in Britain
Pselactus spadix in England and Wales
Review of Longitarsus nigerinus records from the British Isles
Saproxylic Coleoptera of Eridge Park, East Sussex
Rare and notable beetles from riverine sediments in Scotland and N. England
Notes • Letters
Henosepilachna argus new to the U.K. (Coccinellidae, Epilachninae), a phytophagous ladybird new to the U.K., breeding at Molesley, Surrey

Ian S. Menzies 1 & Brian M. Spooner 2

1 Villiers Lodge, 1 Cranes Park, Surbiton, Surrey KT6 2AA
2 31 Balmoral Crescent, West Molesley, Surrey KT8 1OA

A specimen of this spectacular and unusual ladybird, later identified as Henosepilachna argus (Geoffroy) by Dr Roger Booth (CABI Bioscience), was found on 14th May 1997 ‘on a plant’ in a garden in High Street, West Molesley, Surrey (TQ 133678) by Miss Alysia Menzies. A second specimen was discovered at rest on a climbing frame in an adjacent garden on 1st August 1997. This species has not previously been reported from the United Kingdom. It belongs to the subfamily Epilachninae, as does the much smaller but similarly coloured 24-spot Ladybird Subcoccinella vigintiquattuorpunctata (Linnaeus), a common British species which is also phytophagous. H. argus is a highly distinctive ladybird, 6–8 mm in length and covered with short pubescence. Except for 11 round elytral spots, as well as the eyes and abdomen, which are black, the entire beetle is of a bright amber colour. There are virtually no thoracic markings (Pl. 1).

Pl. 1: Adult Henosepilachna argus (Geoffroy) (Coccinellidae) J. A. Owen.
Henosepilachna argus is a well-known species on the European continent where it feeds on the leaves of cucurbitaceous plants, especially white bryony (Bryonia dioica) (Fürsch, 1967). The species is illustrated in some popular books, notably Lyneborg (1977) where it is referred to as Epipilachna chrysomelina (Fabricius). A second European species, Henosepilachna elateri (Rossi) = Epipilachna chrysomelina auct. [non (Fabricius)], is illustrated by Chinery (1986) who also uses the name Epipilachna chrysomelina (Fabricius). In H. elaterii, which is distributed more to the south and east of Europe, the elytral spots adjacent to the scutellum are well separated whereas in H. argus they are joined at the suture.

Further adult beetles were beaten out of ivy (Hedera helix) and honeysuckle (Lonicera sp.) growing together up a fence in the same garden on 1st November 1997 (ISM), nine falling into a tray at the first few strokes! A single specimen was also beaten from an old hawthorn (Crataegus sp.) about 100 m from the garden but, although the beetles were found to nibble the undersurface of cucumber peel, no sign of possible cucurbitaceous food-plants such as marrow (Cucurbita pepo) or white bryony could be found at that time.

During the autumn and early winter of 1997, eight further adult beetles and two larval skins (indicating local breeding) were beaten from ivy and honeysuckle in the High Street garden by R.G. Booth, ISM and J.A. Owen on 4th and 8th November, and a total of 20 adult beetles were obtained from ivy growing in old hawthorns on Molesey Heath (TQ 133673) by A.J.W. Allen, N.F. Heal, P.J. Hodge, ISM & JAO on 7th, 13th and 22nd November, and 13th December.

The first observation for 1998, again by Alysia Menzies, was of an adult flying onto a window pane at the High Street address on 29th April and later (31st May and 1st June) she found about 20 adult H. argus on the leaves of white bryony now to be seen growing up a neighbour's garden fence. Meanwhile, BMS had made an independent discovery (on 21st May 1998) of H. argus in Elmbridge Cemetery (TQ 132685), about half a mile north of the above-mentioned sites. Here it was later found to be feeding in large numbers on white bryony, and to be present in all stages from egg to adult. A visual survey, without beating, carried out in the cemetery on 20th June revealed 23 clumps or colonies of white bryony with a total of 48 adult beetles, including two pairs in copulation, and large numbers of larvae at all instars (Pl. 2). Eggs were not found during this survey, but had been noted, always on the surface of the bryony leaves, during a search of the cemetery on 7th June. Larvae and adult beetles were seen in large numbers on white bryony now seen to be growing amongst the ivy and honeysuckle in the original High Street garden on 6th and, together with pupae, on 29th June (M.J. Collier, N.FH, ISM, JAO); also on small patches of bryony amongst hawthorn at Molesey Heath on 7th July. Large numbers of larvae, pupae and adults were also seen on bryony at the eastern border of Molesey Recreation Ground (TQ 132685) on 6th July (ISM, JAO). Adults and larvae feed by scraping away the leaf surface leaving a skeleton of veins and do not chew from the edge inwards.

On 11th July 1998 a search made by BMS to determine the distribution of H. argus westwards along the River Thames to Walton revealed the beetle (usually both adults and larvae) on almost every development of white bryony as far as the weir (TQ 101672); also on virtually all plants examined along and near the A3050 road towards Molesey, and in areas around the Knight/Bessborough and Queen Elizabeth II Reservoirs. It should be noted, however, that no sign of H. argus was found on white bryony growing in the cemetery and grounds at St Mary's Church, Walton.

Conclusion

Henosepilachna argus (Geoffroy) has recently become established in the UK at Molesey in Surrey, where it is now breeding in large numbers on white bryony. During 1998 it was present virtually everywhere that white bryony was growing within an area of about 2.5 square miles between Walton-on-Thames and East Molesey, bounded by the River Thames to the north. Where examined, plants such as marrow and courgette being grown on allotments in the area proved devoid of the beetle, and attempts by a colleague, J.P. Bowdrey (Colchester Museum), to transfer it to leaves of courgette, were unsuccessful. There is, as yet, no evidence that the species is breeding on any other cucurbitaceous species here.

Since this manuscript was prepared, we have been informed by Mr Steve Lane (Herbert Art Gallery & Museum, Coventry) of the discovery of a single specimen of H. argus from near Stratford-upon-Avon, Warwickshire. This was taken on 4th August 1998 by a Mrs [The Coleopterists 9(1): 1-4, April 2000]
MacDonald in a garden at Upper Fulbrook. Although some white Bryony was present at the edge of the garden, it was considered that the specimen had possibly been feeding on either lemon cucumbers or courgettes. This appears to be an isolated individual, of unknown origin, as no further ladybirds were detected during three visits to the garden during 1998 by Steve Lane. A genetic study of this specimen, which is preserved at the Herbarium Museum, is being undertaken by Dr M. Majerus (Cambridge) for comparison with Mediterranean populations.

Acknowledgements

We are grateful to the following for contributing to the records listed above: Tony J.W. Allen, Dr Roger G. Booth, Peter J. Hodge, Norman F. Heal and Martin J. Collier; also to Prof. John A. Owen who presented the photograph illustrating the adult beetle, and, of course, to Alyssa Menzies (age 8 years), granddaughter of the first author, who first discovered the ladybird at Molesley.

References

Cynindis axillaris (Fabricius) (Carabidae) in Somerset

A. J. Prince

6 Northgate, Wiveliscombe, Taunton, Somerset TA21 3LL

On 17th April 1995 I obtained a ground beetle while looking for ants in grassland at Goblin Combe, N. Somerset (VC 6: ST 478652). I forwarded it to A.G. Duff, who identified the specimen as Cynindis axillaris, an identification subsequently confirmed by Dr M.L. Luff. The species is rated as Notable A (Hyman, 1992) and this is both a new record for Somerset (Duff, 1993) and the first post-1970 record for southwest England (Luff, 1998). It was recently recorded for the first time in Wales (Telfer & Gurney, 1999).

The specimen is now in the collection of A.G. Duff.

Acknowledgement

Thanks are due to Martin Luff for confirming the identification.

References

Table 1: British records of *Bradycellus csikii*, in chronological order of date of capture.

<table>
<thead>
<tr>
<th>Date</th>
<th>Locality</th>
<th>VC</th>
<th>Grid Ref.</th>
<th>Number and sex of specimen(s), habitat details and collector</th>
</tr>
</thead>
</table>

Habitat preferences

The sites at which *B. csikii* have been found appear to have little in common and until there are further records it is difficult to characterise the preferred habitat in Britain. According to Lindroth (1974, 1986), probably referring mainly to the habits of the species in Scandinavia, it is associated mostly with clayey soil. The Little Blakenham (1977) specimen was sifted from moss on 'heavy chalky soil' (Nash, 1979a; 1979b). Recent records from Suffolk Breckland are from very well-drained, loose, sandy soils, more typical of coastal dunes than inland heaths. The Breckland sites form a marked contrast with the clay banks of the Ouse Washes at Welches Dam. It is clear that, in Britain, *B. csikii* can exploit a wide range of habitat types and is certainly not confined to clay soils. Perhaps it is limited by the availability of seeds of particular plants on which the adults feed.

Identification

Bradycellus harpalus and *B. csikii* are genuinely difficult to distinguish except by reference to the male genitalia. The median lobe of *B. csikii*, in dorsal view, is broader and blunter at the apex (Fig. 1), compared with the median lobe of *B. harpalus* (Fig. 2) which is strongly narrowed from base to apex (see also Lindroth (1986)). In well-sclerotized median lobes, the diagnostic internal spines of *harpalus* can be seen near the apex, without clearing. In lateral view, as illustrated by Lindroth (1974), the median lobes are much more similar. The Surrey specimen in the Natural History Museum has the aedeagus mounted in gum in lateral view (probably only because the three-dimensional shape made it very difficult to mount in dorsal view).

Compared with *B. harpalus*, *B. csikii* is darker on average, typically a very dark blackish-brown above, with paler reddish-brown elytral and pronotal margins, first elytral intervals and scutellum. The eyes of *csikii* are slightly less convex than those of *harpalus*; the pronotal foveae are shallower, and the area between the fovea and the lateral margin is less convex. The marginal bead of the pronotum in *csikii* hardly extends onto the base, and then only weakly, whereas in *harpalus* the bead is typically prolonged onto the base. The micro-punctures of the elytral intervals, a character used by Lindroth (1974) to distinguish *csikii*, are rather difficult to see and seem to vary. All of these external characters are subtle and subjective. They are subject to variation in both species and there is sometimes overlap. Even when the full suite of characters is used, the identification of female specimens of *csikii* remains extremely challenging.

Figs. 1-2: Bradycellus spp., aedeagus median lobe. 1 B. csikii; 2 B. harpalus

Conclusions

Bradycellus csikii is established in Britain though still rare, and should be looked for in open habitats, especially in East Anglia. The species is difficult to separate from *B. harpalus*, except by examination of the median lobe of the male genitalia, best viewed in dorsal aspect. MGT would be happy to help with the identification of any suspected specimens of *B. csikii*.

Acknowledgements

We thank Messrs. M.J. Collier, B.C. Eversham, D.R. Nash, and Professor J.A. Owen for allowing us to include their unpublished records and observations, and Dr M.L. Luff.
for helpful advice. J. Hodgkins kindly commented on the manuscript.

References

LIFE, M.L. 1998. Provisional atlas of the ground beetles (Coleoptera: Carabidae) of Britain. Huntingdon: Biological Records Centre.

The intertidal cossinid weevil Pselactus spadix (Herbst) (Curculionidae) in England and Wales

P. Oevering, B. J. Matthews & A. J. Pitman
Forest Products Research Centre, Buckinghamshire Chilterns University College, High Wycombe HP11 2AZ

Introduction

Pselactus spadix (Herbst) is a weevil (Pls. 1-2) that tunnels wood in the intertidal zone (Sawyer & Cragg, 1995). First described by Herbst (1795) as Curculio spadix, it was included in the genus Codosoma by Bedel in 1885 and Philosoplia by Auterivillius in 1924 (Dieckmann, 1983). However, following a revision of this species by Folwaczny (1971), it is now included in the genus Pselactus, subfamily Cossoninae (Folwaczny, 1971; 1973; 1983) or tribe Cossonini (Hoffmann, 1954).

P. spadix is graded Notable B (Scarcie) (Hyman, 1992). It has been reported from coastal habitats in England since the 1850s (Champion, 1871; Walker, 1879; Hoffmann, 1954; Linssen, 1959; Dieckmann, 1983; Folwaczny, 1983; Sawyer & Cragg, 1995), where they infest wooden piles (Folwaczny, 1973), groyner and other sea defences (Walsh, 1925). This species is generally known as inhabiting “driftwood in estuaries” (Ball, 1995) or “in groyne, driftwood and old timber on the coast ... [and] in rotten wood” (Hyman, 1992). The species was reported to prefer coniferous woods (Folwaczny, 1973). The UK distribution was described as “widespread but local in southern and eastern England, also recorded in South Wales” (Hyman, 1992).

Pl. 1: Pselactus spadix (Herbst) (Curculionidae), adult G. S. Sawyer.

[The Coleopterist 9(1): 9-13, April 2000]
This paper collates existing records of *P. spadix*, with 85 new records from 45 locations recorded in a coastline survey for England and Wales during 1998 and 1999.

Methods

In co-operation with the 1998 Annual Beach Survey of the Tidy Britain Group, wooden structures at 148 British beaches and resorts were surveyed. In addition, during 1998 and 1999, a search for *P. spadix* was conducted on English and Welsh coasts. The survey included ports, harbours and remote beaches south of Middlesborough and Lancaster. Upon finding the beetle, the type of structure in which they were tunnelling, and the position of the infestation in relation to tidal level, were recorded. Tidal levels were identified by the presence of other organisms, e.g. lichens in the splash zone, blue-green algae in high intertidal zone and barnacles in the mid intertidal zone (Little & Kitching, 1996).

![Image of Pselactus spadix larva](Pl. 2: Pselactus spadix (Herbst) (Curculionidae), larva G. S. Sawyer.

Identification of *P. spadix*, when present, was undertaken using Folwaczny’s key (1973). Evidence for previous *P. spadix* infestation was confirmed by measuring tunnel and frass dimensions and identification of exoskeleton fragments if present. Thin sections (±20 μm) of infested wood were stained with safranin (1% in 50% ethanol) and temporary mounts were used for wood identification (Phillips, 1979; Coday & Maun, 1997) and examined for the presence of fungi. UK records of *P. spadix* in both personal and institution collections were also listed to map the distribution. Records from personal collections were obtained following the publication of requests for information in *Antenna* (1998, 22(2): 55-56) and *The Coleopterist* (1999, 8(1): 47).

Map 1: Records from collections and personal records of *P. spadix* until 1998.

Map 2: *P. spadix* records from the 1998/1999 survey.
Results

All P. spadix records from collections, personal records and the 1998-1999 survey were coastal (Map 1-2). In the survey, the species was reported most frequently inhabiting fixed sea-defence structures (88%), followed by driftwood (12%).

Results from the survey found that P. spadix colonised all but one timber structure in the intertidal zone. Infested regions were found in the mid intertidal to high intertidal (18%), high intertidal (21%), high intertidal to splash zones (38%) and in the splash to non-intertidal zone (21%).

The infested softwoods (76% of all samples) were identified as Douglas Fir Pseudotsuga menziesii (Mirbel) Franco (21%), Scots Pine Pinus sylvestris L. (22%), unidentified pine Pinus spp. (24%) and other species (9%). Infested hardwoods (24% of all samples) included elm Ulmus spp. (9%), greenheart Ocotea spp. (6%), oak Quercus spp. (5%) and other species (4%). Fungal hyphae were present in 72% of the timber samples examined with the microscope.

Discussion

This survey shows that P. spadix is common in coastal regions of England and Wales where old structural timbers are present. The most northerly record from the survey was in Paul, Yorkshire. Replacement of old structural timbers by new timbers or concrete has probably resulted in the disappearance of this species from locations where it was recorded previously (e.g. locations on the Essex coastline, Map 1-2). P. spadix has not previously been recorded from mid Wales.

The species has been found to infest a range of wooden structures along the coast and is not restricted to estuaries or driftwood. P. spadix is polyphagous and tunnels softwoods and hardwoods. It was found most often in Pseudotsuga menziesii and Pinus sylvestris. Since Ocotea spp., P. menziesii and Quercus spp. are frequently used for marine construction (Oliver, 1974), this study seems to confirm that P. spadix shows a preference for softwoods (Folwaczny, 1973).

The infested regions of the timbers extend into the intertidal zone, where they are prone to submergence by the tides. Microbial decay was present in most of the infested timbers; whether this is a prerequisite for infestation remains undetermined.

Acknowledgements

We are grateful for information supplied by G. Legg (Booth Museum), C.H.C. Lyal (Natural History Museum, London), G.C. McGavin and D.J. Mann (Museum of Natural History, Oxford), and the record collection of English Nature. We gratefully acknowledge the following people for information on their personal beetle collections, records and publications: M.J. Collier, A. Duff, A.P. Fowles, T.D. Harrison, R.J. Marsh, H. Mendel, M.G. Morris, A. Ramsey and G.S. Sawyer. We thank H.B. Oevering for his assistance in the field. The maps were created with DMAP software. The field study was funded by BCUC and the Royal Entomological Society.

References

[The Coleopterist 9(1): 9-13, April 2000]
The identification of *Polydrusus splendidus* (Herbst) (Curculionidae) -
errors in current keys

M. G. Morris

Orchard House, 7 Clarence Road, Dorchester, Dorset DT1 2EP

Mr Norman Heal has kindly drawn my attention to errors in the keys of Joy (1932) and Morris (1997) which make the identification of *Polydrusus splendidus* (Herbst) (= *sericus* (Schaller)) difficult, especially for beginners.

Joy (1932) includes *P. splendidus* in the group of species with "femora simple", Morris (1997) with those having "femora without any trace of a tooth underneath". Both statements are erroneous. *P. splendidus* usually has teeth, generally small but distinct, on at least the middle femora. The teeth are most often even smaller on the fore and hind femora, and are not infrequently obsolete on one or both of them. Indeed, there is considerable variation in the character, with some specimens having very distinct (though small) teeth and others almost completely to the condition specified in the keys.

The intention, presumably in both keys, was to contrast the strong femoral teeth of *P. cervinus* (Linnaeus) and its allies (subgenus *Eustolus* Thomson) with the condition in the other species of the genus, but it is unfortunate that this should have been done in such inaccurate terms.

The keys of Hoffmann (1950) and Smreczynski (1981), the most readily accessible continental works, are based on the subgenera of *Polydrusus* and use other characters for distinguishing them and the species. *P. splendidus* is monotypically placed in *Thomsonoecymus* Desbrochers, and is a particularly distinct species, making it especially regrettable that its identification is unreliable using British literature.

The most satisfactory correction to the British keys would be to rewrite them. This would entail considerable alteration, and a more immediate correction, as a compensation, may be made by modifying couplet 3 of Morris's (1997) key (p. 35) as follows:

3 All femora clearly and strongly toothed underneath (fig. 164) (subgenus *Eustolus* Thomson)

- Femora without a tooth (fig. 165), or with a small but often distinct one, at least on mid-femora (in *P. splendidus*, couplet 9)

A similar correction could be made to Joy's key.

Acknowledgement

Norman Heal is thanked for drawing my attention to the errors referred to above.

References

[The Coleopterist 9(1): 14, April 2000]
Review of *Longitarsus nigerinus* records from the British Isles

from his previous botanical surveys to contain *Utricularia* were identified. We were unable to find any *Longitarsus nigerinus* in the pits near St Leonards, but were successful in finding it in the small area of bog at the northern edge of Week Common, near Hurn (SU 131002), from which *Utricularia minor* had been recorded. Although Hurn now lies in the county of Dorset, it falls within the Watsonian vice-county of South Hampshire (VC 11).

Permission to visit Week Common, part of a private estate, was obtained in the autumn of 1995. The site was visited on 9th March 1996, when the bog was well flooded. By carefully pushing some of the tussock tops at the water's edge into the water, beetles taking refuge from the flood waters were floated on the water's surface. *Longitarsus nigerinus* could then be readily collected from the surface. One very productive tussock contained between 50 and 100 individuals, otherwise specimens were observed at the rate of about 1 per 2 m of water's edge. A short series of voucher specimens was taken, the rest being released on the vegetation.

Subsequent visits during 1997 and 1998 enabled the species' biology to be discovered. Further details will form a separate paper, but in summary, *L. nigerinus* cannot swim underwater, so access to its host, *Utricularia minor* (at least in the UK), for feeding and reproduction, is only possible in later summer when water levels fall and expose *Utricularia* leaves and stems to above the water's surface.

Further fieldwork in 1998 failed to relocate *L. nigerinus* at two of its former sites, Setley Plain and Studland, although parts of Studland Heath National Nature Reserve contained very suitable-looking habitat. However, a new locality for the species was discovered at Common Moor, Burley Street (SU 205043), in the New Forest on 23rd September 1998, with further observations made in November 1998 and April 1999. At this site on the September visit, the RDB1 staphylinid *Acylaphorus glaberrimus* (Herbst) was found, also being recorded in May 1999.

During 1999, a further two new sites for *L. nigerinus* were found in the New Forest. On 24th April, Garth Foster found at least ten specimens at Hatchet Pond (SU 365016), by sinking the mat of bladderswort and *Sphagnum* in a small pool (2 x 1 m) in a complex of such pools at the edge of the main pond. On 18th September, Don Goddard and myself found it, by sinking vegetation, spread over an extensive area (c. 200 m) of the riverside bog to the north of Black Down (SU 348074), adjacent to the Beaulieu River. The place name Witycombe Shade is marked on the 1:25,000 OS maps, but not on the 1:50,000 maps. This site holds the most extensive UK colony of *L. nigerinus* known to date, and is thus of major importance for the species' conservation. Several other coleopterists collected the species from this site the following day, 19th September 1999. Other rare species from this site included the staphylinids *Stenus kiesewetteri* Rosenhauer, *Paeodera caligatus* Ericsson and *Acylaphorus glaberrimus*, as well as the ant-mimicking spider *Myrmachne formicaria* (De Geer).

Rediscovery in South Hampshire

Since it seemed most unlikely that the lack of recent records was due to the disappearance of the species, an attempt was made to relocate it. More recent continental literature, for example Mohr (1962, 1966) also noted the species' occurrence in bogs, with bladderswort *Utricularia* spp. as its host. Armed with this information and my own knowledge of the Hampshire Basin area from my childhood, some possible sites were visited in 1994, but without success. With the help of Mr Robin Walls from Bournemouth, two sites known

[The Coleopterist 9(1): 15-18, April 2000]
Eridge Park, E. Sussex, a little-known site for saproxylic Coleoptera

Brian Levey
Dept of Biodiversity & Systematic Biology, National Museum & Galleries of Wales, Cathays Park, Cardiff CF10 3NP

Eridge Park (TQ 53) just south of Tunbridge Wells, East Sussex, is an ancient park dating back at least 800 years and may have enclosed some of the original "wilderness" rather than being made on wholly cleared or farmed land (Rose, 1995). The park has large areas of ancient broadleaved woodland containing ancient oaks Quercus, beech Fagus, maple Acer and ash Fraxinus; more open heathy areas with Bracken Pteridium aquilinum, Purple Moor Grass Molinia caerulea and Heather Calluna vulgaris; wet areas with carr, mire vegetation, and damp grassland. Eridge Park is a privately owned SSSI, rated Grade 1 in the Nature Conservation Review (Ratcliffe, 1977) and was listed as an important pasture-woodland in Harding & Rose (1986) because of its rich epiphyte flora, but the Coleoptera were unknown at that time.

During 1984 I paid three half-day visits to the park, and subsequently between 1989 and 1993, when I lived in Tunbridge Wells, I paid ten more half-day visits. All the Coleoptera in the following list were collected in the northern part of the park in squares TQ 5635, 5735 and 5835. Most of the specimens were collected by sweeping or examination of dead fallen timber. During the 1987 hurricane a large number of beech, and some oak trees were blown down in this part of the park, and quite a lot of fallen timber was still present in the area surveyed between 1989 and 1993.

For completeness I have included in the list those saproxylic Coleoptera recorded on the JNCC Invertebrate Site Register database, with a reference to the source of the record. I have followed Fowles et al. (1999) in deciding what to include as a saproxylic species. 81 species of saproxylic Coleoptera have been recorded from the park (see Appendix), of which 26 species were included in the list of species indicative of the continuity of dead-wood habitats in ancient woodlands by Harding & Rose (1987). There are five grade 2 indicators and 21 grade 3 indicators, giving Eridge Park an Index of Ecological Continuity of 31 (Alexander, 1988). Using the scoring system of Fowles et al. (1999), Eridge Park has a Saproxylic Quality Index (SQI) of 342.0. 20 of the species recorded from the park, 15 of which are saproxylic species, are considered to have either Red Data Book (RDB) or Notable status as listed in Hyman (1992, 1994).

In comparison with some other large ancient parklands in Sussex, such as Arundel Park, the saproxylic Coleoptera of Eridge Park have scarcely been investigated. The limited amount of collecting I have done in one area of the park suggests that it has an important saproxylic coleoptera fauna, and the list would undoubtedly be much longer if flight-interception traps and other trapping methods had been used, and other areas of the park had been investigated. The IEC score of 31 indicates a site of national importance (Alexander, 1988), however the SQI score of 342.0 is well below the threshold value of 500 which has been suggested as indicating national importance by that measure (Fowles,
Alexander & Key, 1999). Nevertheless, Eridge Park is undoubtedly of local significance, as there is only one East Sussex site for saproxylic Coleoptera listed in Fowles et al. (1999) and none in Harding & Alexander (1994).

The most interesting species recorded were the following:

- *Acruria inflata* (Gyllenhall) (Staphylinidae). A single specimen was collected on 4th October 1992. This species has a mainly northern and western distribution in Britain. Its presence at Eridge Park may reflect the relatively high rainfall of the Sussex Weald and the high humidity of the woodlands, which apparently accounts for the occurrence of sensitive oceanic plants far to the east of their general range (Rose, 1995). The Eridge Park record is probably one of the most southeasterly for this species, although I did collect a specimen on 10th August 1971 in my parents' garden in central London. This species has not been previously recorded from E. Sussex.

- *Agrilus pannonicus* (Piller & Mitterpacher) (Buprestidae). Characteristic D-shaped holes were found in the bark of several wind-felled oaks. Similar evidence of this species was also seen on wind-felled oaks on Tunbridge Wells Common (W. Kent) in the same period. These trees were probably blown down during the 1987 hurricane, and the quantity of dying wind-blown oaks available the following year might be one of the reasons why this species has spread so rapidly. It can be very abundant locally, judging from the hundreds of emergence holes I saw in a section of the trunk of a recently felled oak tree in a recreation ground in Hawkenbury, Tunbridge Wells, in June 1993.

- *Xyletinus longistriatus* Janson (Anobiidae). A single specimen was swept from grass and other low-growing vegetation at dusk on 27th June 1993, in the vicinity of large fallen and standing beech trees. This appears to be one of the most recent records for this scarce species and the first record for E. Sussex, although it has been recorded from Parham Park, W. Sussex (Johnson, 1975).

- *Ciccones variegata* (Heilwig) (Colydiidae). Two specimens were taken on a hard perennial bracket fungus (*Ganoderma* sp.) on a large beech tree, on 12th June 1992. This appears to be the first record of this species for E. Sussex.

The following notable non-saproxylic species of Coleoptera were also recorded:

- *Gyrphaena foetida* Wülff (Staphylinidae) (Notable); *Rhagonycha lutea* (Müller) (Cantharidae) (Nb); *Adonia variegata* (Goeze) (Coccinellidae) (Nb); *Cryptoplaeaphus parvulus* (Müller) (Chrysomelidae) (Nb); *Rhynechites tomentosus* Gyllenhal (Attelabidae) (Nb).

Acknowledgement

I wish to thank Peter Hodge for advice on new species records for East Sussex.

References

Appendix: Saproxylic Coleoptera recorded from Eridge Park.

Key: C = common; L = local; VL = very local; U = unknown; KNAA = K.N.A. Alexander; PJI = P.J. Hodge. The statuses given within brackets are the amended statuses given in Fowles et al. (1999).

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Indicator Grade</th>
<th>Source of INCC record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histeridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrasus globosus (Hoffmann)</td>
<td>L(VL)</td>
<td>also KNAA</td>
<td></td>
</tr>
<tr>
<td>Paromalus flavicornis (Herbst)</td>
<td>L</td>
<td>also KNAA</td>
<td></td>
</tr>
<tr>
<td>Leioidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agathidium varians Beck</td>
<td>L</td>
<td>also KNAA</td>
<td></td>
</tr>
<tr>
<td>Scoliopterus bicolor (Denny)</td>
<td>L(VL)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Scolophilidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolophilus quadrimaculatus Olivier</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaphisoma agricarium (Linnaeus)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylinidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acruria inflata (Gyllenhal)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phloeodes punctipennis Thomson</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitheocharis subtilissima Mannerheim</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabus splendidus (Gravenhorst)</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyrphaena angustata (Stephens)</td>
<td>Nb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placuna pullicola (Gravenhorst)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomognathus caspiderus (Erichson)</td>
<td>C(L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepusca pulchella (Mannerheim)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinaraea aegyptia (Erichson)</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psephilidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euplestes piceus Motschulsky</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucanidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorcus parallelipipedus (Linnaeus)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoldronotus cyaneus (Linnaeus)</td>
<td>C(L)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

[The Coleopterist 9(1): 19-23, April 2000]
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciiidae</td>
<td>Octoecaus glabricus (Gyllenhal)</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Suleopsis affinis (Gyllenhal)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Cig pygmaeus (Marsham)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Cig vestitas Meliè</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Cig holiei (Scopoli)</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Cig fagi Wartl</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Cig nitidae (Fabricius)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Cig setiger Meliè</td>
<td>L</td>
</tr>
<tr>
<td>Mycetophagidae</td>
<td>Liturgus connexus (Foureroy)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Mycetophagus atonocus (Fabricius)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mycetophagus quadrupustulatus (Linnaeus)</td>
<td>L</td>
</tr>
<tr>
<td>Colydiidae</td>
<td>Ciciconia variegata (Hollwig)</td>
<td>Na(Nb)</td>
</tr>
<tr>
<td></td>
<td>Bitoma inornata (Fabricius)</td>
<td>L(VL)</td>
</tr>
<tr>
<td>Tenebrionidae</td>
<td>Eledona agricola (Herbst)</td>
<td>Nb(VL)</td>
</tr>
<tr>
<td></td>
<td>Priocyclus ater (Fabricius)</td>
<td>Nb</td>
</tr>
<tr>
<td>Tetratomidae</td>
<td>Tetratomya fasciaria Fabricius</td>
<td>L</td>
</tr>
<tr>
<td>Salpingidae</td>
<td>Rhinocorus ruficolors (Linnaeus)</td>
<td>C</td>
</tr>
<tr>
<td>Pyrochroidae</td>
<td>Perchorae coccinea (Linnaeus)</td>
<td>Nb(VL)</td>
</tr>
<tr>
<td>Melandryidae</td>
<td>Orchesia undulata Krantz</td>
<td>L(VL)</td>
</tr>
<tr>
<td></td>
<td>Conopsus testaceus (Olivier)</td>
<td>Nb</td>
</tr>
<tr>
<td>Cerambycidae</td>
<td>Rhaediis hiliscaturn Fabricius</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Rhaediis natae (de Geer)</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>stempera melanura (Linnaeus)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Lepidota maculata (Poda)</td>
<td>C</td>
</tr>
<tr>
<td>Carabidae</td>
<td>Phleocerus nigricans (Marsham)</td>
<td>L</td>
</tr>
<tr>
<td>Scolytidae</td>
<td>Dryocoelus vitiosus (Fabricius)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Taphronychus bicolor (Herbst)</td>
<td>Na(Nb)</td>
</tr>
<tr>
<td></td>
<td>Truspenedron domesticum (Linnaeus)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Xyleborus saxosus (Ratzeburg)</td>
<td>L(VL)</td>
</tr>
<tr>
<td>Platypodidae</td>
<td>Platypus spinius (Fabricius)</td>
<td>Nb</td>
</tr>
</tbody>
</table>

Eridge Park, E. Sussex, a site for suproxylate Coleoptera
Aegialia sabaleti (Panz.) (Scarabaeidae) in Surrey

Jonty Denton
2 Sandown Close, Alton, Hampshire GU34 3EG

Since the surprise discovery of this species in Sussex (Hodge, 1991), I had suspected that it ought to occur beside the River Wey in Surrey, which locally has very similar characteristics to the River Rother at the original West Sussex site at Woolbeding. There adults are found amongst sand and rotting leaves and twigs heaped up on the banks by winter flooding. The beetles probably breed in debris, with adults regularly found in damp sand adjacent to litter layers. Adults are also found crawling over the surface, especially in the spring.

I finally found a single female on a sandy bank of the River Wey at Thuny Meadows, Surrey (SU 8944) on 6.v.1999, the first record for VC 17. It is worth noting that all the females I have encountered to date (c.20) have been all-black; males can have quite reddish elytra. This colour difference has also been noted from Scottish populations (Roger Booth, pers. comm.). Its affinity with the other British Aegialia Latreille is surprising, as it bears little resemblance to either. Indeed it is likely to be mistaken for an Aphodius Illiger species, especially A. brevis Erichson. However, the crenulate edge of the thorax is distinctive (Fig. 1). In time a revision of the group may shed some light on the situation.

Fig. 1: Aegialia sabaleti (Panz.) (Scarabaeidae). (scale = 1 mm). J. S. Denton.

Reference

Introduction

Luff, Eyre & Jessop (1996) reported a number of records from pitfall trapping on exposed riverine sediments (ERS) by the River Tyne, whilst one of the surveys in Eyre, Luff & Lott (1998) was pitfall trapping on ERS by the Rivers Carron, Nith, Spey and Tweed carried out in 1996. Considerably more ERS samples were taken by these rivers in 1997 as well as ERS sites by a number of tributaries. The sites in the Carron area were by the Allt a'Chain, Glen Docherty Burn and Ledgowan Burn. Sites on the tributaries of the Spey were by the Rivers Avon, Calder, Druie, Culmain, Feshie and Livet and the Dorkab Burn. The sampling on the tributaries of the Nith was limited to the Scar Water and Crawick Water. The Scottish sites on the tributaries of the Tweed were by the Alw Water, Allan Water, Kail Water, Northleach Burn and Rantle Burn. In addition, sites on tributaries of the Tweed in northern England by the Rivers Breamish, Glen and Till were pitfall-trapped. This gave a total of 189 sites on ERS sampled in 1996 and 1997 in work on Scottish river ERS. In addition, more work has been carried out on 1995 material from sites by the River Tyne, on 1996 samples from the Rivers South Tyne, Pont and Blyth and in 1997 from sites by the River Coquet, all in Northumberland. This paper reports on the occurrence of rare and notable species recorded from all these pitfall surveys.

Rare and notable species

CANTHARIDAE

Cantharis obscura Linnaeus Nb
A species of woodland and woodland edge, this species was recorded from the River Spey (NN 7097), where the nearest trees were older Abies, by the River Druie (NH 9110), next to Scots Pine Pinus and the River Nith (NX 9186) where the sediment was shaded by mixed broadleaved trees, all in 1997.

CARABIDAE

Amara fulva (Müller) Nb
There are records of this species of sandy sites from sediments by the River Tyne in 1995 (NY 9163, NY 9764) and South Tyne in 1996 (NY 7864). It was also found by the Dorback Burn (NJ 0716), the River Calder (NN 7097), Culmain (NH 8620), Feshie (NH 8401, NH 8562) and Spey (NN 7097, NH 8911) in Scotland and from by the Rivers Breamish (NU 0416) and Till (NU 0425, NT 9930) in Northumberland, all in 1997.

Anara quenstii (Schoenherr) Nb

This species is restricted to northern Scotland and was found by the Dorback Burn (NJ 0716), in the same area as found by Cooter & Owen (1979), and the Rivers Calder (NN 7097) and Feshie (NH 8401, NH 8502) in 1997.

Asaphidion pallipes (Dautscheidt) Nb

Found by the River Tyne in 1995 (NY 9165, NY 9764) and South Tyne in 1996 (NY 7864) and from the Ale Water (NT 4620) in the Scottish borders in 1997. Other Scottish records from 1997 were northern, by the Rivers Avon (NJ 1520) and Feshie (NH 8502).

Bembidion bipunctatum (Linnaeus) Nb

Recorded from the Rivers Avon (NJ 1520) and Carron (NH 0148, NH 0852, NH 1035) in 1997.

Bembidion fiorule (Olivier) Nb

Found on sand by the South Tyne in 1996 (NY 7864) and in 1997 from the Dorback Burn (NJ 0716) and the Rivers Calder (NN 7097), Dulnain (NH 8620), Feshie (NH 8502), Spey (NN 7097) and Till (NU 0425, NT 9930).

Bembidion monticola Sturm Nb

Another species found by the River Tyne in 1995 (NY 9165, NY 9764) and South Tyne in 1996 (NY 7864), as well as by the River Blyth (NZ 1577) in 1996. It is very local in Scotland (Luff, 1998), with only 5 post-1970 km squares, but it was recorded from the Allt a’Chaim (NH 0260), the Rivers Livet (NJ 2225), Spey (NJ 3358) and Tweed (NT 1535, NT 4932) and the Northbourn Burn (NT 4406) in 1997, as well as by the Till (NT 9930) in Northumberland.

Bembidion schuellii Dejean Na

This species is readily recorded in the England/Scotland border country with six records in Eyre, Luff & Lott (1998). Recorded from the Rivers South Tyne (NY 7864), Blyth (NZ 1577) and Pont (NZ 1271) in 1996, by the Coquet (NT 9503) and Till (NU 0425, NT 9930, NT 9337) in 1997, all in Northumberland. On the Scottish side of the border it was found in 1997 by the Ale Water (NT 4620), Allain Water (NT 4609), Kake Water (NT 7615, NT 7823), Northbourn Burn (NT 4406), Rannke Burn (NT 3116) and River Tweed (NT 3039).

Bembidion stromoides Dejean Nb

The only additional record for this species was from the River South Tyne at Beltingham (NY 7864) in 1996.

Bembidion tateaeum (Dautscheidt) Nb

Another species found by the River South Tyne at Beltingham (NY 7864) in 1996.

Carabus clavatus Linnaeus Na

There were two more records of this mainly moorland species from sediments on the Ledgown Burn (NH 1255) and the River Carron (NH 1053) in 1997.

Dyschirius angustatus (Arens) RDB3

A species of sand by rivers, estuaries, and coasts, the recent records in Hyman (1992) are for the southern coast of England. However, Key (1995) and Lyszchowska, Owen & Sinclair (1994) recorded it from Cumbria and from by the River Nethy near Nethy Bridge and by the Spey at Fochabers in 1991. It was found by the Rivers Avon (NJ 1520), Drue (NH 9110) and Dulnain (NH 8620) and from the Dorback Burn (NJ 0716) in 1997, all tributaries of the Spey. The Drue site appears to be very rich to that mentioned by Allen (1994) where the species was found in the 1930s and 1940s.

Harpalus quadrinaculatus Dejean Na

Found by the Dorback Burn (NJ 0716) and the River Spey (NN 7097) in 1997.

Micronecta arctica (Paykull) Nb

This species was abundant by the Dorback Burn (NJ 0716), possibly because of the adjacent moorland and also found by another moorland next to the River Dulnain (NH 8620) in 1997.

Pterostichus aequulus (Cretzsch) Na

A specialist sediment species, living deep in the substrate, this 1997 find from Kirkgold by the River Nith (NX 8693) is the only post-1970 record for Scotland, although there is a previous old record from Dumfrieshire (Hyman, 1992; Luff, 1998).

Pterostichus cristatus (Diluros) Nb

The recording of this large species, normally found in unmanaged grasslands and woodlands, from sediments by the Rivers Livet (NT 2225) and Spey (NJ 3358) in 1997, together with the northern Scottish records in Eyre, Luff & Lott (1998), may indicate that it has now spread a considerable distance from the original north-east England distribution centre. It was also recorded from the Rivers Tyne (NY 9165, NY 9764) in 1995, South Tyne (NY 7864), Pont (NZ 1271) and Blyth (NZ 1577) in 1996.

Pterostichus lepides (L.) Sturm Nb

A dry heathland species (Luff, 1998) it was recorded from sediment by the River Feshie (NH 8401) in 1997.

Pterostichus oblongopunctatus (Fabricius) Nb

This woodland species was found in 1997 from the Rivers Drue (NH 9110), by coniferous wood, and the Spey (NH 8991), by broadleaved woodland.

Thalassodiploss longicornis (Sturm) Na

This intersitial species was found again by the River Carron (NH 0148) in 1997, having been found in another sediment on this river in 1996 (Eyre, Luff & Lott, 1998). It was also found in 1997 by the Kale Water (NT 7615), the first record for the Tweed catchment and by the River Coquet at Hastywater (NT 9602) in Northumberland. This is the first confirmed record for Northumberland as all nineteenth century ‘Northumberland’ records are actually from Cumbria (Eyre & Luff, 1987).

Trechus rubens (Fabricius) Nb

Apparantly usually found in coniferous woodland and by streams (Luff, 1998), it was found in Scotland in 1997 by the Ledgown Burn (NH 1253), the Rivers Drue (NH 9110), Feshie (NH 8502), Nethy (NH 8693), the Kale Water (NT 4620), Kale Water (NT 7615) and Northbourn Burn (NT 4406). In Northumberland it was found by the River Blyth (NZ 1577) in 1996 and the River Tweed (NT 8642) and Till (NT 9930) in 1997. The sediment by the Drue was by coniferous woodland, the one by the Feshie by birch Betula woodland and the rest by various agricultural grasslands.

CHRYSONOMELIDAE

Lupercus flavipes (Linnaeus) Nb

A species associated with birch Betula (Hyman, 1992), there were numerous birch saplings where this species was recorded on the sediments by the River South Tyne (NY 7864) in 1995 and by the River Avon (NJ 1520) in 1997.

Mantura chrysanthamie (Koch) Na

Recorded in the Scottish borders again by the Ale Water (NT 4620) and also in Northumberland by the River Till (NT 9337), both in 1997.

Mantura obtusa (Guylenhal) Nb

This species was also found by the Ale Water (NT 4620) in 1997.

Mantura rustica (Linnaeus) Nb

Recorded from the River Tyne at Dilston Haughs (NY 7964) in 1995.

COCCINELIDAE

Coccinella quinquemaculata Linnaeus RDB3

Recording in 1997 added to the three records from 1996 (Eyre, Luff & Lott) with this species found by the Rivers Avon (NJ 1520), Calder (NN 7097), Drue (NH 9110), Feshie (NH 8502), Livet (NJ 2225) and Spey (NN 5394). It appears to occur throughout the Spey
catchment and these records expand the known distribution of this species (Majerus et al., 1997).

Cryptophagidae

Atonaria nigricollis Stephens Notable

Recorded from the River Tyne at Dilston Haughs (NY 7964) in 1995.

Curculionidae

Anthonomus convexus Desbrochers Nb

Associated with rosin Sorbus (Hyman, 1992), there were few trees by either the River Nith (NX 8689) or the River Glen (NT 9131) where it was found in 1997.

Barynotus squamosus Germar Nb

Nbarly a species usually recorded in upland situations (Hyman, 1992), this species was found in 1993 by the River Tyne (NY 9165), by the South Tyne (NY 7864) in 1996 and by the Feshie (NH 8502), the Spey (NN 5394, NJ 3358), the Ledgowan Burn (NH 1255), the Nith (NN 5512, NX 9186), the Ale Water (NT 4620), the Northhouse Burn (GT 4406), the Tweed (NT 3059, NT 4932) and the Coquet (NT 9503) in 1997. Only two sites were adjacent to moorland but none were at especially high altitude.

Baryphetes salicifrons (Bohemian) Nb

This species of well drained grassland was found by the Kale Water (NT 7615) in 1997.

Brachysomatus echinatus (Bonsdorff) Nb

Found by the River South Tyne at Bellingham (NY 7864) in 1996.

Glocia praecox (Sahlberg) Nb

The record of this species for Wester Ross by Collingwood (1957) was beaten from birch Betula, which is unusual since it is associated with daubentonia Tettigonia (Hyman, 1992). Thus, the record from the Kale Water (NT 7823) in 1997 may be the first authentic one for Scotland.

Cryptophagus lasiatus (Linnaeus) Nb

A species found on willows Salix (Hyman, 1992), which were not present on the River Glen sediment (NT 9131) where it was recorded in 1997.

Cryptophagus equestis (Fabricius) Nb

Not an uncommon species (Eyre, Luff & Lott, 1998), it was found by the Rivers Tyne (NY 9165, NY 9764, NZ 1365) in 1995 and South Tyne (NY 7864), Pont (NZ 1270, NZ 1271) and Byth (NZ 1577) in 1996. In 1997 it was also recorded from the Dorback Burn (BN 0716), the Rivers Avon (NL 1520), Dunblane (NH 8620), Spey (NN 7097), Tweed (NT 1535), Till (NN 0425, NT 9930, NT 9337), the Ale Water (NT 4620), the Northhouse Burn (GT 4406) and the Runkle Burn (NT 3116).

Hypera diversipunctata (Schrack) RDB3

Recorded from a hay meadow in Upper Tayside by Luff, Eyre & Jessop (1996), the habitat requirements of this species have not been adequately explained (Hyman, 1992). It was recorded in 1997 by sediments from the River Tyne (NY 9165), in 1996 by the South Tyne (NY 7864) and in 1997 by the Nith (NX 8693, NJ 9186) and the Kale Water (NT 7615).

Lytoclytus leucogaster (Marschall) Nb

Found in 1996 on Kelso Anna (NT 7233) by the Tweed.

Natapis anthis (Fabricius) Na

Apparantly associated with branched bar-reed Sparganium erectum, there are plenty of old records from Scotland (Hyman, 1992). Records from the Rivers Carron (NH 0852), Druck (NH 9110), Dunblain (NH 8620), Spey (NN 7097, NJ 3338), Nith (NX 8693), the Ledgowan Burn (NH 1255) and the Runkle Burn (NT 3116) in 1996, and earlier records from the Nith in 1996 (Eyre, Luff & Lott, 1998), indicate that it is still widely distributed in Scotland. However, S. erectum was not present at any of the sites.

Natapis anthis (Fabricius) Na

Apparantly associated with branched bar-reed Sparganium erectum, there are plenty of old records from Scotland (Hyman, 1992). Records from the Rivers Carron (NH 0852), Druck (NH 9110), Dunblain (NH 8620), Spey (NN 7097, NJ 3338), Nith (NX 8693), the Ledgowan Burn (NH 1255) and the Runkle Burn (NT 3116) in 1996, and earlier records from the Nith in 1996 (Eyre, Luff & Lott, 1998), indicate that it is still widely distributed in Scotland. However, S. erectum was not present at any of the sites.

ELATERIDAE

Ctenesca pectinicornis (Linnaeus) Na

Apparently a species of meadows (Hyman, 1992), this species was found by the River Carron (NH 1053, NT 0148) in 1997. There are two post-1950 Scottish records for this species in Mendel & Clarke (1996) but the present record appears to be the most northerly in Britain.

Floretia maritima (Curtis) Na

This species was recorded from all the dry sediments with cobbles and boulders sampled. It was found by the River Tyne (NY 7964) in 1995 and from the Allt an Chaith (NH 0260), Glen Docherty Burn (NH 0361), Dorock Burn (NJ 0716), Allan Water (NT 4609), Kile Water (NT 7615), Ranksburn Burn (NT 3116), Scar Water (NS 7602) and the River Avon (NJ 1520), Calder (NJ 7097), Druie (NH 9110), Durnie (NH 8620), Feshie (NH 8802, NH 8401), Livet (NJ 2225) and Coquet (NT 9503) in 1997.

Nagastus puichellus (Linnaeus) RDBK

The recording of this species from the Dorock Burn (NJ 0716) and the Rivers Avon (NJ 1520) and Druie (NH 9110) tributaries of the Spey, in 1997 appears to conflict with the assumption by Hyman (1992) that it may be declining. It was interesting that the records were from sites on unmanaged streams and rivers and not the engineered main river.

Paraprida impressa (Fabricius) Nb

This is a woodland species and the sediments from the River Tyne (NY 7864) and River Druie (NH 9110) where it was found in 1995 and 1997 were by mixed and coniferous woodland respectively.

ELMIDAE

Rhiisus cuprea (Miller) Nb

This riffle beetle presumably uses the sediment as a pupation site and it was found by the River Blyth (NZ 1577) in 1996.

Rhiisus subvaricata (Miller) Nb

This is more common than *R. cuprea*, with over 100 post-1960 km square records (Holland, 1980); it was recorded from the Rivers Nith (NS 8107) and Tweed (NT 3039, NT 4932, NT 6231) in 1996.

GEOSISSIDAE

Geosius crenatus (Rossi) Na

A species of damp sand, it was very abundant by the River Till (NU 0425, NT 9930, NT 9337) in 1997 and was also found by the Ranksburn Burn (NT 3116).

HELOPHORIDAE

Helophorus arenarius Mulsant, Nb

A considerable number of records were generated in 1996 (Eyre, Luff & Lott, 1998) and it was also found by the River Tyne (NY 9165, NY 9764) in 1995 and the Rivers South Tyne (NY 7864), Pont (NZ 1270) and Blyth (NZ 1577) in 1996. In 1997 it was found from the Alee Water (NT 4620), Allan Water (NT 4609), Dorock Burn (NJ 0716), Kile Water (NT 7615, NT 7823), Northstead Burn (NT 4406), Ranksburn Burn (NT 3116), Scar Water (NS 7602, NS 7701) and the Rivers Avon (NJ 1520), Breamish (NU 0416), Druie (NH 9110), Durnie (NH 8620), Festive (NH 8802), Glen (NT 9131), Livet (NJ 2225), Till (NU 0425, NT 9930, NT 9337) and Coquet (NT 9503, NT 9062).

HYDRAENIDAE

Ochthebius bicolor Germain Nb

Recorded from the Rivers Tyne (NY 9165) in 1995, South Tyne (NY 7864), Pont (NZ 1270, NZ 1271) and Blyth (NZ 1577) in 1996 and the Breamish (NU 0416) and Till (NU 0425, NT 9930, NT 9337) in 1997.

Ochthebius exsulcatus Germain Nb

Recorded by the River Coquet (NT 9503) in 1997.

HYDROPHILIDAE

Cercyon insulatus (Reuss) Nb

This is not specifically a sediment species but was found by the River Blyth (NY 1577) in 1996 and River Till (NT 9930) in 1997.

Charazetra communis (Herbst) Nb

Recorded from the Ranksburn Burn (NT 3116) in 1997.

LEIDIOIDAE

Aegagrinum marginatum Stein Notable

A species found in sites such as dunes (Hyman, 1994), it was found on a sandy sediment next to the River Tyne near Watermuir (NY 9165) in 1995.

Chironomus stagnalis (Pictet) Notable

Recorded from moorland, woodland and some sediments by Eyre, Luff & Lott (1998), it was taken on sediments by the Rivers South Tyne (NY 7864) and Pont (NZ 1270, NZ 1271) in 1996 and the River Nith (NX 8093) and the Kile Water (NT 7615) in 1997.

Coliolum vivipes Horsfall RDBK

There is an old record from the ‘Solway district’ and it has been found previously on river sediments (Hyman, 1994) and by the River Nith in northern Scotland (Jones, 1988). It was found by the River Tweed (NT 1535, NT 6231) in 1997, probably the only recent records for southern Scotland.

Lucytris minata (Ahrens) Notable

In addition to the records from sediments in Eyre, Luff & Lott (1998), there are 1997 records from the Rivers Calder (NN 7097) and Till (NT 9930).

NITIDULIDAE

Thalorna ferox (Olivier) Nb

Previously found in coniferous woodland in Scotland (Hyman, 1994), the sediment next to the River Druie (NH 9110) from where it was recorded in 1997 was adjacent to mixed woodland.

PSELAPHIDAE

Brachygastra paradelis (Sauvel) RDBK

Found by the upstream River Tweed (NT 1535) and also by two of the smaller tributaries, the Northhouse Burn (NT 4406) and the Ranksburn Burn (NT 3116), all in 1997.

SCARABAEIDAE

Aegialus sabulifer (Panzera) Nb

In addition to the numerous records in Eyre, Luff & Lott (1998), it has also been found by the River Tyne (NZ 1265) in 1995, the South Tyne (NY 7864) in 1996. In 1997 it was recorded from the Glen Docherty Burn (NH 0361), the Dorock Burn (NJ 0716) and the Rivers Avon (NJ 1520), Calder (NN 7097), Druie (NH 9110), Durnie (NH 8620), Festive (NH 8802, NH 8401), Nith (NX 8693), Spey (NN 5394, NN 7097) and Till (NU 0425, NT 9930, NT 9337).

SCIRIDAE

Hydrophilus deflexicollis (Müller) Nb

There are records from 1997 from the Alee Water (NT 4620), River Carron (NG 9744), Northhouse Burn (NT 4406), Ranksburn Burn (NT 3116) and River Spey (NN 7097).

SILPHIDAE

Acalyptris apicalis (Linnaeus) Na

Sinclair (1994) and Eyre, Luff & Lott (1996) recorded this species from a number of non-riverine sites in Scotland and northern England, but it was taken on sediments by the Rivers Calder.
Nicrophorus interruptus Stephens Nb
Recorded from the River Tyne near Watersmeet (NY 9165) in 1995.

Staphylinidae

Aleochara brevipennis Gravenhorst Notable
Recorded from the Spey in 1996 (Eyre, Luff & Lott, 1998), there were more records from northern Scotland in 1997 from the Rivers Carron (NY 7944), Calder (NN 7907), Drui (NH 9110), Feshie (NH 8502) and Spey (NN 7907), by the River Bothy (NN 8693) and Kale Water (NT 7615) in southern Scotland and by the River Till (NT 9337) in Northumberland. This is not a scarce species with records from more than 100 km squares (Welch, 1997).

Aleochara ruficornis Gravenhorst Notable
Found by the Rivers Tyne (NY 9165) in 1995, South Tyne (NY 7864), Pont (NZ 1270, NZ 1271) and River Blyth (NZ 1577) in 1996 and by the River Nith (NS 8107) in 1997.

Aleochara versus Say RDBK
Welch (1997) rated this species as at best Notable as it was recorded from the Rivers Calder (NN 7907), Feshie (NH 8502) and Nith (NH 8693) and the Kale Water (NT 7615) in 1997.

Alevonina rufofasciata (Kraatz) Notable
Found by the River Glen (NT 9131) in 1997.

Alococota echiophila (Scriba) Notable
This species, previously recorded from riverine sediments, was found by the Ledgown Burn (NH 1255), the Northhouse Burn (NT 4406) and the River Tweed (NT 1535) in 1957. Apparently recorded north to mid-Pertshclyde (Hyman, 1994), the record for Ledgown Burn may be the most northerly in Britain.

Athera aquatica (Thomson) Notable
Recorded from the River Tyne (NY 9165) in 1995.

Athera ebenina (Mulsant & Rey) RDBK
This species was new to Northumberland from the River South Tyne at Bellingham (NY 7864) in 1996 and was also found by the Ale Water (NT 4620) in 1997, in the same area as the records from the River Tweed (1996 Eyre, Luff & Lott, 1998).

Athera obscura (Gravenhorst) Notable
Said to be found at north as south Yorkshire (Hyman, 1994), this species was found by the River Tyne (NY 9165) in 1995 (Luff, Eyre & Jexeso, 1996). It was also recorded from the South Tyne (NY 8642) in 1996 and Till (N 0423, NT 9337) in 1997, also in Northumberland, and from the Ale Water (NT 4620) in the Scottish borders in 1997. These appear to be the first records for northern England and Scotland respectively.

Athera sylvatica (Kraatz) RDBK
The unconfirmed record from South Northumberland in Hyman (1994) is confirmed by a record from the River South Tyne at Bellingham (NY 7864) in 1996.

Blaedius arcticus Sahlberg RDBK
Found on stones by the Rivers Aven (NJ 1520), Drui (NH 9110), Dalmain (NH 8620), Feshie (NH 8502, NH 8401) and Spey (NJ 3358) and the Dorback Burn (NJ 0716) in 1997, all in north-east Scotland.

Carcelimus subtilis (Smetana) Notable
Recorded north to north Northumberland (Hyman, 1994) and found there again, on damp sand, by the River Till (NT 9337) in 1997.

Chilopota rubicanda (Erichson) Notable
Taken on sediments by the River Tyne (NY 9165) in 1995 and South Tyne (NY 7864) in 1996.

Delevater dichrous (Gravenhorst) Nb
To add to the numerous records in Eyre, Luff & Lott (1998), this species was found by the River Tyne (NY 9165) in 1995 and from the Kale Water (NT 7615) in 1997. It has also been recorded from the Kale Water (NS 8218), Glen Docherty Burn (NH 0361), Kale Water (NT 7615) and Northhouse Burn (NT 4406) and by the Rivers Carron (NH 8532, NH 0148), Drui (NH 9140), Feshie (NH 8502), Glen (NT 9131), Nith (NN 8693), Spey (NH 8911) and Tweed (NT 3039).

Erichsonius signaticornis (Mulsant & Rey) Nb
Previously recorded from southern Scotland (Hyman, 1994), this species was recorded in 1997 from the Glen Docherty Burn (NH 0361), possibly the first record for northern Scotland. Other records in 1997 from southern Scotland were from the Ale Water (NT 4620), Allan Water (NT 4609), Kale Water (NT 7615), Northhouse Burn (NT 4406), Rankle Burn (NT 3116), Sear Water (NS 7602) and River Tweed (NT 1535) and from Northumberland by the Rivers Till (NH 9360), Breamish (NU 0416) and Coquet (NT 9505, NT 9602).

Euparius plepis (Paykull) RDBK
The records in Eyre, Luff & Lott (1998) were from woodland and marsh but this species was taken on sediment by the Ale Water (NT 4620) in 1997.

Gabrius bishopi Sharp Nb
Recorded from the Ale Water (NT 4620), Allan Water (NT 4609), Kale Water (NT 7615), Northhouse Burn (NT 4406) and the Rivers Nith (NX 8692, NX 9186), Till (NT 9390, NT 9337) and Coquet (NT 9503), all in 1997.

Gabrielus eschscholtzii (Kolenati) Nb
This species has been recorded from a number of habitat types, not all of them riverine, but it was found on sediments by the River Tyne (NY 9165) in 1995 and by the Rivers Carron (NH 1053) and Nith (NX 9186) in 1997. The record for the Carron appears to be the first for northern Scotland (Hyman, 1994).

Hydrometra delicatula (Sharp) RDBK
There is an old record for this species from the River Drui (Allen, 1994) and it was found on sediment by the River Carron (NH 0148) in 1997, which appears to be the first record for north-west Scotland (Hyman, 1994).

Hydrometra fragilis (Kraatz) Notable
Recorded in 1997 from the Allan Water (NT 4609) and Doarback Burn (NJ 0716) and the Rivers Calder (NN 7907), Carron (NY 9744), Spey (NJ 1335) and Coquet (NT 9563).

Hydrometra thomsoni (Kraatz) Notable
This species is only listed for southern Scotland in Hyman (1994) but it was found in northern Scotland in 1997 from the Doarback Burn (NJ 0716) and the Rivers Calder (NN 7907), Carron (NH 0148), Dalmain (NH 8620) and Spey (NJ 1335). It was also found in 1997 by the Allan Water (NT 4609), Rankle Burn (NT 3116) and River Coquet (NT 9535, NT 9602).

Hydrometra variabilis gen. nov Bemick Notable
Found by the River Carron (NH 0148) in 1997.

Ilyobates subspinosus Palm Notable
Hyman (1994) states that there has been confusion of this species and I. nigricolla (Paykull) leading to uncertainty about whether it has been recorded from Scotland. However, it certainly occurs in southern Scotland with records in 1997 from the Ale Water (NT 4620), Allan Water (NT 4609), Cawick Water (NS 8218), Kale Water (NT 7615) and Northhouse Burn (NT 4406). It was also recorded from the Rivers South Tyne (NY 7864), Pont (NZ 1270, NZ 1271) and Blyth (NT 1577) in 1996 and River Till (NU 0425, NT 9930, NT 9337) in 1997.

Lamprodonus sagittatus (Gravenhorst) Na
Recorded from the Kale Water (NT 7823) in 1997.
Lathrobium angusticolle Boisduval & Lacordaire Nb
This specialist sediment species was recorded in 1997 from the Allen Water (NT 4609), Crawick Water (NS 8218), Glen Docherty Burn (NH 0361) and Kale Water (NT 7615) and the Rivers Calder (NN 7097), Carron (NH 1053, NH 0148), Feshie (NH 8502), Nith (NX 8693) and Tweed (NT 8642).

Lathrobium dilatum Ericsson RDBK
Not apparently recorded from northern England, this sediment species was recorded from the River South Tyne at Bellingham (NY 7864) in 1996.

Myllaeona elongata (Matthews) Notable
There were records for southern Scotland in Eyre, Luff & Lott (1998) but records in 1997 from the Dorback Burn (NJ 0716) and River Spey (NJ 1335) appear to be the first for northern Scotland. It was also found by the River South Tyne (NY 7864) in 1996.

Neohilara subterranea (Mulsant & Rey) RDBK
Another species found by the River South Tyne at Bellingham (NY 7864) in 1996.

Ochathophilus venustulus (Rosenhauer) Notable
Also found by the River South Tyne (NY 7864) in 1996.

Ocyphus noro (Faldersmann) Na
Recorded from a number of non-riverine habitats (Hyman, 1994), it was found by the River Tyne (NY 9165) in 1995 and from the River Nith (NX 9186) in 1997. There is a record in the 1960s for ‘Fair Isle’ in the Scottish Insects Records Index which is not mentioned by Hyman (1994) and the Nith record could be the first for Scotland.

Ocyphus hibernica (Rye) Notable
Apparently a species of mountains and moor (Hyman, 1994), this species was found at low altitude by the River South Tyne (NY 7864) in 1996 and at sites near moorland by Dorback Burn (NJ 0716) and the River Dalnain (NH 8620) in 1997.

Oncaetum rugatum Mulsant & Rey Notable
Not noted from riverine habitats by Hyman (1994), it was found by the River South Tyne (NY 7864) in 1996 and by the River Nith (NS 8107) in 1996.

Oxygona exoleta Ericsson Notable
Found by the Rivers Tyne (NY 9165) in 1995, South Tyne (NY 7864) in 1996, and Till (NT 9930, NT 9337) and Tweed (NT 8642) in 1997, all in Northumberland.

Quedius fulvipennis (Stephens) Nb
Recorded from the River Drui (NH 9110) in 1997.

Quedius longicornis Knautz Nb
Not usually recorded from rivers (Hyman, 1994), it was found by the Rivers South Tyne (NY 7864) and Pont (NZ 1271) in 1996 and the Rivers Nith (NX 8693) and Tweed (NT 3039) in 1997.

Sepsedophilus constans (Fowler) Notable
Another species not usually found by rivers, it was found by the Rivers Tyne (NY 9165) in 1995, South Tyne (NY 7864) in 1996 and Nith (NX 9186) in 1996.

Sema incana Ericsson RDBK
A river sediment species recorded from the Dorback Burn (NJ 0716), River Dalnain (NH 8620) and Northoaburn Burn (NT 4406) in 1997.

Sema oscillato Rye Nb
A species of wetland (Hyman, 1994), not specifically riverides, it was found by the River Feshie (NH 8302) in 1997.

Tachynex bicincta Ericsson RDBK
Recorded from the River Till (NU 0425) in 1997 from an area of damp sand.

Discussion
There has been increased reporting of records of beetle species thought to be important in conservation, generally based on the reviews of Hyman (1992, 1994). Most (e.g. Denton, 1998; Whitehead, 1998; Lott, 1999) reports are lists of the rarer species derived from general collecting using a variety of methods. However, the lists in Luff, Eyre & Jessop (1996) and Eyre, Luff & Lott (1998) were derived using standardised trapping techniques, especially pitfall trapping, in investigations of the beetle assemblages of various habitat types, with no emphasis on the recording of rare or notable species. Given these recent reports of rare and notable beetle species, a number of species previously thought to be of conservation importance may be too common to be of interest or use, a position alluded to by Eyre (1998) and Eyre, Luff & Lott (1998). Table I shows the number of records, and the number of 10 km squares, of a selection of rare and notable species recorded on riverine sediments and other habitats by MDE and MLL using pitfall traps since 1985.

Table 1: The overall number of records in all habitats (one species in one site in one year) of some nationally rare and notable beetle species found on riverine sediments, recorded by M.D. Eyre and M.L. Luff since 1985 and the number of 10 km squares covered by the records.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of records</th>
<th>Number of 10 km squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carabidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amara fulva (Müller) Nb</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>Bembidion litorale (Olivier) Nb</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Bembidion scheppeii Dejean Na</td>
<td>54</td>
<td>22</td>
</tr>
<tr>
<td>Drychius angustatus (Ahrens) RDBK</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pierocostus cristatus (Dufour) Nb</td>
<td>177</td>
<td>35</td>
</tr>
<tr>
<td>Trechus rubens (Fabricius) Nb</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>Chrysomelidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manura chrysanthemi (Koch) Na</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Coecinellidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coecinella quinquemaculata Linnaeus RDBK</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Curculionidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hynanthus squamosus German Nb</td>
<td>61</td>
<td>37</td>
</tr>
<tr>
<td>Cystus squamatus (Fabricius) Nb</td>
<td>80</td>
<td>37</td>
</tr>
<tr>
<td>Hypeura diversispinipunctata (Schrank) RDBK</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

this paper indicate a species that is unexceptional within its limited range. There were 33 post-1950 10 km square records of *Fluctuicollis maritimus* in Mendel & Clarke (1996) and there are a considerable number of more recent records. This is an archetypal example of a 'northern and western' species thought to be rare or scarce by collectors living in the south and east of Britain. There are numerous examples of other species in Hyman (1992, 1994) which appear to be rated as rare or notable because they do not occur in southern England.

Given the records of *Dyschirius angustatus* in this paper and by others (Key, 1993; Lyszczkowski, Owen & Sinclair, 1994; Luff, 1998) it is likely that the present information concerning the distribution of this species is at least as good as it has ever been. This means that the information in the Biodiversity Action Plan (BAP) lists (Department of Environment, 1995) concerning decline may be inaccurate. The RDB3 designation for *D. angustatus* may be reasonable but it does not now apply to *Coccinella quinquemaculata*. There are 20 1984-1994 10 km squares in Majorus *et al.* (1997) and seven more reported in Eyre, Luff & Lott (1998) and in this paper.

The decline information for *Negasrius pulchellus* has a '?' by it in the BAP lists. There are seven post-1950 10 km square records in Mendel & Clarke (1996) and two more in this paper. It is obvious that the BAP information is guesswork and that it is highly unlikely that the RDB2 Vulnerable status is appropriate since *N. pulchellus* occurs by some of the most naturally disturbed rivers in Britain. *Negasrius sabulicola* is also RDB2 but there are 11 post-1950 10 km squares in Mendel & Clarke (1996) and *N. sabulicola* has been found in the catchments of the Nith, Tyne and Tweed recently (Luff, Eyre & Jessop, 1996; Eyre, Luff & Lott, 1998). It also does not appear to be particularly vulnerable.

It is obvious that the present situation where importance is attached to out-of-date national statuses and Biodiversity Action Plans is very unreliable. It is interesting that the site quality index of Archer (1996), based on bee and wasp records, has had to be modified by redefining species rarity (Archer, 1999), because the statuses given by Falk (1991) are now so inaccurate. A more objective assessment procedure is required. This would probably be based solely on distribution scheme data with well-defined species rarity values strictly adhered to. Species rarity values should be updated at regular intervals with incorporation of new data, especially from standardised surveys.

Acknowledgements

We would like to thank Dr G.E. Rothery for information from the Scottish Insect Records Index. Scottish Natural Heritage are to be thanked for funding the work on the Scottish riverine sediments.

References

Scutellar variability in the Quedius boops complex (Staphylinidae)

M.L. Luff 1 & J.A. Owen 2

1 Dept of Agricultural & Environmental Science, University of Newcastle upon Tyne NE1 7RU
2 8 Kingsdown Road, Ipswich, Suffolk, IP4 1BD

The presence or absence of scutellar setae and punctures is an important character used in the keys to the genus Quedius by Joy (1932) and more specifically in the subgenus Raphirus (Smetsena, 1962; Freude et al., 1964). Among beetles identified by M.L.L. from pitfall traps on an experimental moorland management site operated by the Macaulay Land Use Research Institute (MLURI) at Dundonnell, West Ross (NH 07 1915), was a small female Quedius, collected on 25 October 1994. The specimen had an apparently glabrous meso-scuteum, and was provisionally named Q. acuticorne Kiesenwetter. In the absence of reference material of this species, it was sent to J.A.O. for confirmation, and it became evident that the specimen differed in many respects from Q. acuticorne. It was then kindly examined by Mr Peter Hammond of the Natural History Museum, and provisionally identified as possibly Q. spurius Lockay, a montane species known from central Europe (Freude et al., 1964).

It seemed wise to introduce Q. spurius as an addition to the British fauna on the basis of a single female example, as a male would be needed to confirm the species’ identity. Accordingly J.A.O. visited the area in 1997 and carried out further pitfall trapping from 24 June to 3 October, as well as hand searching for further similar specimens, but without success.

The experimental site was pitfall trapped again by MLURI in the 1998 season, and the catches again identified by M.L.L. The September and October samples included large numbers of Quedius boops (Gravenhorst), a species that had also been recorded in the 1994 catches. Comparison of the suspected Q. spurius with a selection of the Q. boops suggested that the two could be identical, save that Q. boops has a palescent meso-scuteum, in common with the rest of its subgenus Raphirus. The scutellum of the problem specimen appeared to be devoid of pustules, but more detailed examination (using a magnification of at least x50, and a diffused intensity lamp so as to show up even the trace of any punctures) revealed a single seta and a further pore, both in the posterior part of the scutellum. It was therefore concluded that the problem specimen was merely an aberrant example of Q. boops, with greatly reduced scutellar puncture. The question remained: how exceptional was this condition, and how variable is scutellar puncture in Q. boops? As a preliminary step to answer this, M.L.L. examined examples of Q. boops from various parts of Britain, and the results are summarised below.

Specimens of Q. boops from Dundonnell had from zero (female specimen) to 13 setae, all on the hinder two-thirds of the scutellum; the anterior third had at most three minute pores without setae. The mean (of 12 specimens) was 6.5 setae. We then examined further examples from our own collections, as well as material kindly loaned by Mr Peter Hodge, Dr Colin Welch and Mr Alex Williams. From 42 specimens examined, the numbers of scutellar setae ranged from zero (one specimen from Finnish Lapland) to 18 (mean 9 setae). The material included two further specimens that differed in their adenoalge shape and which appeared to be Q. ardidus (Ljanssen), following the drawings in Lohse & Lucht (1989, p. 183 - a reference which is omitted by Hodge & Jones (1995), possibly because the drawings are located at the end of the ‘Staphylinidae’). These two beetles had 25 and 30 scutellar setae respectively, extending almost to the anterior margin of the scutellum, and quite different from most of the Q. boops in which the anterior third of the scutellum was quite or nearly glabrous. A subsequent examination of 13 examples of Q. ardidus showed the numbers of scutellar setae to range from 15 to 30 (mean 22). Thus although there is some overlap between the two species, we suggest, on the basis of this admittedly small sample, that Q. boops may generally be distinguished from Q. ardidus by having fewer scutellar setae (and exceptionally, none at all) that are restricted to the posterior two-thirds of the scutellum, in contrast to the uniformly more densely pustulate scotellum of the otherwise very similar Q. ardidus. Users of the keys to Quedius and Raphirus referred to at the beginning of this note should however be careful to avoid being
misled by exceptionally glaring examples of Q. boops.

Acknowledgements

We are grateful to Dr. Nick Eye and Mr. David Owen for assistance with servicing pitfall traps in 1994 and 1997 respectively, and to Dr. Andrew Nolton of MLURI for providing details of the experimental site and allowing us to work there. We also wish to thank Mr. Peter Hammond (Natural History Museum) for initially checking the identity of our problem Quedius, and to Mr. Peter Hodge, Dr. Colin Welch and Mr. Alex Williams for so readily lending specimens from their own collections.

References

Aphanisticus pusillus (Olivier) (Buprestidae) new to Gloucestershire

K. N. A. Alexander

This nationally scarce (Hyman, 1992) beetle is not included in Atty (1983) but has been found in Gloucestershire on four occasions in the last few years. It was first discovered in the county by Chris Willshire at Breakheart Hill (ST 79) in 1996. Both of these localities lie within W. Gloucestershire (VC 34). More recently two further sites have been found by myself in E. Gloucestershire (VC 33): one swamp from sedge-dominated limestone grassland in Bidele Road Cemetery, Stroud (SO 80), 26th May 1997; and taken in numbers by suction sampling at Grovedale Banks (SO 91), 9th July 1998.

It is curious that such an evidently widespread inhabitant of species-rich limestone grassland in the Cotswolds was noted by coleopterists for so long. The clue appears to be the difficulty in finding this small cryptic beetle in the turf. The recent ready availability of suction samplers has revolutionised recording of this (and other) species.

It is also curious that the literature generally suggests that it is a wetland beetle, associated with Scolenus nigricans L. (Leveley, 1977) or Juniper spp. (Bily, 1982). whereas I know it solely from dry limestone pastures. Bily (1982) mentions the probability that it also breeds in some sedge Carex spp. The Cotswold grasslands contain locally abundant Carex flacca Schreber and C. carpophila Lour and these presumably provide suitable feeding habitat. The larvae are reported to develop in mines in the aerial parts of the foxtAILS (Bily, 1982).

References

The Cornish records for Athous campyloides Newman (Elateridae)

Keith Alexander

The National Trust, 33 Sheep Street, Cirencester, Gloucestershire GL7 1HE

Whitehead (1998) has made some interesting observations on the possible occurrences of this nationally scarce species on particular soil structure and vegetation cover in the relatively recent soft-rock geology of Cornish England. This note considers the habitat associations on the Palaeozoic geology of the south-west— an area of quite different character to that described for the species in lowland England and for south-east Wales (Mann, 1998).

Athous campyloides was first found in Cornwall more than 20 years ago. Bannister (1974) swept the species near Lizard village (SO 61/71) in July 1974; no further details of this finding are available. A single female was found by myself beneath a stone lying within semi-natural calc-grazed permanent pasture on the Holman Farm (SW 651555), close to Pool, on the Trust’s Penrose Estate in West Cornwall, 7th November 1989. Unfortunately it was not noted at the time whether the beetle was associated with any burrow which might have linked it with the larval habitat, although the early date would suggest recent emergence (Allen, 1988).

The grassland here is of an unimproved circum-neutral character, with Sweet Vernal-grass Anthoxanthum odoratum L., Yorkshire Fog Holcus lanatus L., Red Fescue Festuca rubra L., Crested Dog’s-tail Cynosurus cristatus L. and bent Agrostis sp. being the major grass species present and Common Knapweed Centaurea nigra L., Ribwort Plantain Plantago lanceolata L., Common Bird’s-foot Trefoil Lotus corniculatus L., Sorrel Rumex acetosella L., and Daisy Bellis perennis L. the main broad-leaved herbs. This is a species-poor version of the MG5e Cynusus cristatus-Centaurea nigra grassland, Danthonia decumbens sub-community, of the National Vegetation Classification (Rodwell, 1992). MG5 grassland is the characteristic unimproved grassland type of well-drained circum-neutral brown earth soils. This was once widespread in the British lowlands but has undergone huge loss in extent primarily due to agricultural intensification, so that it is now scarce. The MG5e sub-community occurs where soils are rather nutrient-poor and calcium-deficient and is comparatively widespread in western Britain.

The site lies on the lower slopes of Mylor Hills of the Devonian sedimentary strata, i.e. slates and siltstones. Soils are largely loamy textured, free-draining brown earths. Thus the geological situation is very different to that described by Whitehead (1998) for its Worcestershire site and the two Kent localities. Perhaps impeded drainage is less important for the beetle larvae in the wetter climate of West Cornwall than in drier areas up-country. Conditions rather more similar to those where the species has been recorded in the south-east do, however, occur in the valley bottom, just below where the specimen was found, and may well be the larval habitat at this site. The margins of the Pool include a thick band of silt and clays originating from the former mineral workings upstream.

Although Mann (1998) comments that the species appears to be spreading west, there is actually no real evidence for this. It seems equally likely that people are only now detecting long-established populations.

Acknowledgements

My thanks to Howard Mendel for details of the Bannister record and to Janet Lister for information on the vegetation, soils and geology at Penrose.

References

[The Coleopterists 9(1): 41-42, April 2000]
Some scarce beetles in Kent

Kevin Chuter
51 Hodders Lane, Detling, Kent ME14 1LN

STAPHYLINIDAE

Bledius furcatus (Olivier)
A single male specimen of Var. sterniculatus (Curran) was collected at Ringmer, E. Sussex, at M. v. light (Hodge, 1978), and speculates that it may be an immigrant, or resident at the limit of its range.

Colydidae

Cicindela undata (Guérin: Ménéville)
A single specimen of Cicindela undata was taken under the bark of a mature dead sycamore Acer pseudoplatanus at the edge of a wood at Bursfold, Kent (TQ 75Y) 4.4.1998, and identified by Eric Philip. The bark of the tree was loose enough to remove with a blade and was dried beneath. A further search of the same and nearby trees was made 8.5.1998, and the beetle was found in some numbers in the company of Rhamphus pinirostris (Fabr.) (Salpingidae), Mycophagus piceus (Fabr.) (Mycophagaetidae), and Dromia quadrimaculata (L.) (Carabidae). One specimen was found under a bark flake on a living tree, but after extensive searching, no more were found on living trees. The absence of Harrison (1983) of the association with sooty bark disease, would seem to be borne out. The beetles were all found singly, but a group of six was found on another visit in ii.1999.

Chrysomelidae

Gastrophysa viridula (De Geer)
Specimens of this beetle were taken at Headcorn, Kent (TQ 84I) on Romex obtusifolia (Polygonaceae) on the bank of the River Boul, on 28.vi.1992 and 27.vii.1997. Both adults and larvae were present and plentiful, doing considerable damage to the food plants. On 11.vi.1999 gravid females and larvae were seen. Mr. Eric Philip collected specimens from further upstream at TQ 84I, 28.vi.1998. This beetle has not been recorded in Kent since J.J. Walker’s record of 1890. (Fowler, 1908) says: “On dock leaves in marshy places, Snodland, seaside”.

Curculionidae

Sisone cambricus Stephens
Several specimens of this weevil were extracted from moss collected beside a woodland road in Hampshire Forest (TQ 83D) on 1.4.1998, and further specimens were found on 14.ii.1998. Fowler (1908) says: “Marshy places, at roots of grass, in moss and by sweeping, rare. Charlton and Plumsted, Hythe.” Chitty (1905) recorded two from Bleam Woods in the summer of 1904. There are no other recent records for Kent. Another visit was made in 1999 by myself and Eric Philip, and further specimens were found in the same area of moss, indicating a healthy colony overwintering.

Rhynchognaeus populioculato Silfverberg
A single specimen of this weevil was extracted from flood debris found at Headcorn, Kent (TQ 84I) on 1.1.1998, from the River Boul. Two other specimens taken by L. Cracke at the same location on 15.vii.1997, also proved to be R. populioculato. A confirmatory visit to the site was made on 22.iii.1999; four more adults were found on the same tree, all heaved from Hedenia halter on the trunk. These were probably hibernating as no more were found on the surrounding willows, which were then leafless. The March specimens were somewhat encrusted and may arrive at the site in floodwater and later breed, prompting more investigations upstream. One further specimen was found in flood debris on 24.iv.1999, but none could be found in surrounding trees. On 11.vi.1999, on the same willow, five adults were found on the first branch that I beat onto the tray, with further branches producing as many as 20 and similar numbers on nearby trees. The beetle would appear to be well established. Parry (1981) confirmed this as a British species and Heal (1994) found the species in East Kent in 1983-93. These records indicate widening of its range across Kent, and should prompt further searching in other areas.

Acknowledgements
I would like to thank Mr. Eric Philip for his help with identification, and access to references and records.

References

Philhygra fallaciosa (Sharp) (Staphylinidae) new to Ireland

Roy Anderson
Dept of Agricultural & Environmental Science, Queen’s University, Newforge Lane, Belfast BT9 5PX

Philhygra (formerly Atheta subg. Philhygra) fallaciosa (Sharp) is a wetland staphylinid which has been recorded widely in Britain, from south-east England (Windsor Forest - Donisharpe, 1937) to the Outer Hebrides (Last, 1973), but not from Ireland (Anderson et al., 1997).

On 8th April 1999 I took a male of this species at Corbelly Bog (T.J. J 451382) in the Lecale Peninsula of Co. Down. Corbelly Bog is an interdrumlin hollow and comprised a mixture of open pools, Phragmites australis L. swamp and grazed, shallow fen dominated by the bryophyte Callitriche hamatica (Hedw.) Kibb. A fairly rich assemblage of Coleoptera is listed for the site, including the relict fenland dystics Hydrophorus scolias O. Stephens. Philhygra fallaciosa was taken by a method I generally use in shallow wetlands; which is to tread down vegetation and sweep the shallow water over it with a fine plastic sieve. This species is one of the smaller Philhygra but males are recognisable by the laterally-flattened and projecting, spoon-shaped apex to the head (Benick & Lohse, 1974).

Philhygra fallaciosa has recently been reported, new to Holland, from peaty polders at Naardermeer (Vorst & Cuyper, 1996), but is mainly known from upland bogs in Europe as far south as Italy (Focarile, 1989). Benick & Lohse (1974) suggest that it is primarily a peatland species in central Europe but a more typical habitat in the British Isles would appear to be mireotrophic.
feeland or marshes. At Corbally, staphylinid associates include typical fen species such as Phthironius junarius (Gravenhorst), Hygrotricha dimidiatia (Gravenhorst) and Stenus nitens (Stephens).

References

Cantharis fusca Linnaeus (Cantharidae) rediscovered in Yorkshire
K.N.A. Alexander
14 Partridge Way, Crewkerne, Somerset TA20 1NS
The disappearance of Cantharis fusca from much of its former British range appears to have received little comment in the entomological literature. Old records are thinly scattered over a wide area, including England, Scotland and Wales. In the last 20 years or so, however, I have only been aware of records from a few southern coastal areas in Kent, Sussex, Hampshire and the Isle of Wight, plus Somerset where it appears to be fairly widespread (Duff, 1993). Its continued presence in Yorkshire is therefore of considerable interest.
My attention was first drawn to the species still occurring in Yorkshire by Jim Jobe, who knew it from High Batts Reserve (SE 301764), part of Ripon Parks SSSI. It had first been found here by Mike Denton, 21.11.1992, and subsequently by JJ, vi.1993. The beetles have been observed at umbellifer flowerheads in a damp hollow within the rough grassland of the main ride in the reserve, which is predominantly wooland and scrub; the Reserve area would have been more of a grassland site earlier this century, when the river course was different. The broad ride was cut through the developing scrub woodland in 1973 and is maintained by cutting on a four year rotational programme in October (S. Warwick, pers. comm.).

Bob Marsh has subsequently sent me details of all Yorkshire records for the species, and these include two further relatively recent records: Thorne Moor (SE 7116), 1978 (P. Skidmore) and Huggate (SE 8855) (P. Crowther).

Recent British localities have mostly been from rich fen or hay meadow vegetation, and it seems a reasonable assumption therefore that the decline of the species has been largely due to habitat degradation and destruction, through drainage and water abstraction works lowering water tables, and/or changing agricultural practices to increase productivity.

Acknowledgements
I would like to record my thanks to Jim Jobe, Bob Marsh and S. Warwick for passing me details of these records and sites.

References

Chrysolina oricalca (Müller, O.F., 1776) (Chrysomelidae) new to West Lothian
Alex J. Ramsay
School of Biological Sciences, University of Birmingham, Birmingham B15 2TT
At variable of a wooded track south of Upper Kinneil Farm near Bo'ness, West Lothian (NS976793) on 21st June 1998 revealed the presence of a large black chrysoelmid which I could not immediately identify. The first specimen was located on the lower part of a flowerhead of Hedge Parsley Torilis japonica. A second specimen was found further along the track on Hogweed Heracleum sphondylium. Using Joy (1932) the specimens were provisionally identified as Chrysolina oricalca, subsequently confirmed by Dr M.L. Cox.
Although widespread throughout England and occurring in north Wales and southern Scotland (Hyman, 1992) this is the first record of this nationally scarce (Nb) species in West Lothian (Cox, pers. comm.). The species on Hogweed is of particular interest since this is not recorded as a foodplant in Hyman (1992), but it may simply have been resting on the plant, since no obvious feeding damage was observed.

Acknowledgement
My thanks to Dr M.L. Cox of the Dept of Entomology, Natural History Museum, London, for confirming C. oricalca.

References

Letters
Response to 'The changing status of British Cotharidae'
John Bruton
18 New Street, Menai Bridge, Anglesey LL59 6HJ
Keith Alexander kindly acknowledges comments on an early draft of his paper assessing declines in British Cantharidae (Alexander, 1999). However, I still have serious doubts about the validity of his argument, or else I have seriously misunderstood the first two columns of figures in his Table 1. I do not believe his comparison of pre- and post-1970 records at the 10 km square scale demonstrates declines. Keith claims, for example, that Mallophora panther (Bréthesson) has declined dramatically. Yet his Table 1 shows there are records from more 10 km squares in the last 25 years (33) than in the period before 1970 (49). To claim such figures represent a decline, one has to assume firstly that all squares with modern records also supported this species before 1970, and secondly that there has been sufficient recording pressure since 1970 that no post-1970 occurrences of the beetle will have been overlooked in squares with only pre-1970 records. I doubt whether either assumption is valid. The first is probably a less important source of error, but it rules out the possibility of a species expanding it range. The second assumption, however, depends on cantharid recording having been thorough since 1970 as to have reached saturation point, and this is where I believe the main fault in the analysis lies. To use the data presented to infer a decline, one has to assume that a 10 km square with only pre-1970 records indicates a local extinction. To draw conclusions from such negative records, one has to have either surveyed the seemingly empty square very

[The Coleopterist (91): 44, April 2000]
diligently or to know that no suitable habitat survives there. Such thoroughness can usually only be devoted to rare species whose habitat requirements are both well-known to entomologists and seldom met with.

Reference

Reply to John Bratton’s letter
Keith Alexander
14 Partridge Way, Cirencester, Gloucestershire GL7 1BQ

Twinn & Harding (1999), in the latest BRC Atlas (p. 25), state that ‘the presence of an open circle does not necessarily mean that the species has declined since 1970. It may indicate that the locality has not been visited or that the species was not looked for. However, the apparent absence of many species in recent years from within their former ranges suggests that these species may have become more difficult to find than was formerly the case’. In my article I go further and suggest that the proportion of circles which are open may suggest the extent to which a species has declined within its former range, especially when compared with other species which show a different proportion. This is the basis upon which many species have currently been assessed for inclusion in the Government’s Biodiversity Action Plan.

The standard dot maps provide three main types of information: 1. the extent of country over which dots are scattered, which can be interpreted as showing the extent and pattern of the range of the species; 2. dot density, which can be interpreted as giving an indication of the status of the species; 3. age of records on which the dots are based, which can be interpreted as giving an indication of changing status. All of these are very useful in understanding the ecology of the species concerned and the implications to their conservation.

Dot density is actually a better guide to national status than the actual number of dots - the current criterion. A good case is Dritus flavescens which is still widespread on semi-natural grasslands on the chalk and other base-rich grasslands of southeast England and not a key conservation species, but - because of its restricted range in GI4 - is known from relatively few 10 km squares and so has ‘Nationally Scarce’ status. Dot density gives a more reliable indication of its conservation status. Other examples include Scyllaena aurata and Tomocestus bimaculatus.

Changing status is very much a current big issue in nature conservation and is the main driving force in the UK Biodiversity Species Action Plans, cf. the bumblebee maps in Volume IV (Anon., 1999). My article - which has so inured JB’s wrath - was merely applying the UK Biodiversity approach to a different dataset. I purposely took the BAP approach too far as my intention was to stimulate some discussion on the value of dot maps amongst coleopterists. John’s is the only written comment so far, but two other people have commented verbally – one comment was “interesting!” and the other also appreciated my intent!

How do we interpret the data provided by dot maps? JB implies that it is spurious to do so. But is that true? If so, why does the Joint Nature Conservation Committee fund the Biological Records Centre to produce them? My paper was a first attempt to explore what might be deduced and drawn heavily on the UK Biodiversity approach.

References

[The Coleopterist 9(1): 46, April 2000]
Literature notices

[The Coleopterists 9(1): 48, April 2000]