MICROSCOPES for NATURALISTS

We offer a comprehensive range of low-power stereo microscopes and high-power microscopes specially selected for the needs of the naturalist, amateur and professional.

We are the importers and stockists of the well-known high-performance MEIJI range of research standard stereo microscopes from Japan, as well as budget-priced WESSEX microscopes, selected from the best of Chinese instruments.

Our range includes camera attachments for microscopes, high-intensity illuminators, fibre optic illuminators and a good selection of quality hand-lenses and accessories.

Delivery of most instruments is by return of order from our extensive stocks. We understand your needs, and can offer advice in the selection of suitable equipment.

Catalogue and price-list available on request.

Hampshire Micro
The Microscope Shop
Oxford Road, Sutton Scotney, HANTS, SO21 3JG
Tel: 0962 760228 FAX: 0962 760652

THE COLEOPTERIST

CONTENTS

Editorial
A belated note on Chloecaris debilicornis (Wollaston) (Staphylinidae) new to Britain. A. B. Drake
Longitarsus longitarsus Weise rediscovered and Longitarsus albidotertius Graven (Chrysomelidae) new to Britain. R. G. Booth
Recent publications of interest to coleopterists.
Oulema melanopus (Chrysomelidae) in Britain. R. G. Booth
Two name changes to the British list of Meligethes Stephens, 1830 (Nitidulidae).
A. H. Kirk-Spriggs
Does Carcinosops parvilo (Erichson) (Histeridae) exhibit anthropotropic behaviour? R. C. Welch
Carcinosops parvilo (Erichson) at large. J. A. Owen
Cardiophorus gramineus (Scopoli) (Elateridae) etc., near Monmouth c.1860: a new county record and the last known for Britain. A. A. Allen
A provisional key to the weevils of the genus Hymen (Coleoptera) (Curculionidae) recorded from Britain. A. P. Fowles
Rhabdinotus montanus (Goeze) (Carabidae) in Norfolk: a second 20th century locality. M. G. Telfer & B. C. Everesham
Agrilus putitorus Olivier (Buprestidae) - summary of Kentish records. N. F. Heal
An unusual specimen of Sciapatus asperatus (Bonsdorff) (Curculionidae).
R. W. J. Rea
Rhynchites pubipennis (Silfverberg) (Curculionidae); further occurrences in Kent. N. F. Heal
A new ecological niche for Gibbium aquinoctiale Beeldens (Piniidae) in Britain, and a reconsideration of literature references to Gibbium spp. B. Constantine
Kent Coleopterists' Group - 11th July 1993. N. F. Heal
List of county recorders. P. J. Hodge
Subscriber's notices
Journal contents (Coleoptera). M. J. Collier

Entomologist's Record and Journal of Variation, 105 (1993)

Editor: H. MENDELS
THE COLEOPTERIST

Editor
H. Mendel
Ipswich Museum, High Street, Ipswich, Suffolk IP1 3QH.

Editorial Panel
Dr. K.N.A. Alexander M.J. Collier J. Cooter
Dr. A.G. Duff P.J. Hodge Dr R.S. Key Prof. J.A. Owen

Copy to the editor for the following issue by:
1st March, 1st July, 1st October

Where to write

Subscription details (cheques payable to The Coleopterist), back issues, non-arrival of journal, changes of address:
The Hon. Treasurer, P.J. Hodge, 8 Harvard Road, Ringmer, Lewes, East Sussex BN8 5HJ.

Articles for publication (2 copies), books for review, trade advertisements:
The Editor, H. Mendel, Ipswich Museum, High Street, Ipswich, Suffolk IP1 3QH.

Wants, Sales & Exchanges, scientific papers to be noticed:
M.J. Collier, 67 Church Lane, Harleston, Norwich, Norfolk IP20 0EU.

Subscription rate for 1994

Ordinary (Individual) - Britain and other E.E.C countries £7.00
- Other countries £10.00
Corporate (Libraries, Institutions, Businesses, etc.) £10.00
(payable in £ sterling)

© The Coleopterist
The copyright of the figures remains with the artists.

EDITORIAL

With The Coleopterist now in its third year and the number of subscribers still increasing, the editorial panel has decided to put the management of the journal on a more secure footing. As things stand, I probably own The Coleopterist but, over the course of the year, the editorial panel will be formally constituted and thereby provide for a more secure long-term future. That having been achieved, it is my intention to stand down as editor after overseeing the last issue of the year (volume 3: part 3) in December. New faces and new ideas are the life-blood of any journal and I need the time to complete my ‘magnum opus’ on click beetles if it is to be published before the distribution data becomes out of date!

There has been some confusion as to when subscribers should expect their three issues of The Coleopterist each year. This has, in part, been due to a general misinterpretation of the term ‘copy date’. The copy dates for the three issues are 1st March, 1st July and 1st October. These are the last dates by which authors should send their copy to the editor for inclusion in the following issue, published April/May, August/September and November/December, respectively. To avoid any complications associated with literature citations, the front cover of The Coleopterist will carry the actual month of publication. That is why volume 2(3), which ideally should have been published by the end of December 1993, is marked ‘January 1994’ on the front cover.

Martin Collier and Andrew Duff have now joined the editorial panel and, with existing members, contributed to a productive meeting held on 20th March 1994. Looking to the future, a number of changes are in store. Commencing with this issue, Derek Lott has agreed to produce a regular update of the British list, carrying on the good works of John Owen who recently brought the list up to date (Coleopterist 2:1-18; 2:67). A new cover is in prospect. However, first of all we need someone with artistic skills to prepare a design. If you think that you have the necessary flair for the job, please contact the editor.

To broaden the content of The Coleopterist, contributions about surveys, conservation issues and the like would be very welcome. Perhaps someone reading this would even be prepared to ‘chase’ such items and pull them together for a regular ‘News and Comment’ feature. In the mean time, if you have a bee in your bonnet of relevance to coleopterists please write to the editor. There is some good news for authors of major papers - reprints will be available this year.

The next meeting of the editorial panel will be in Autumn 1994. The main item on the agenda will be to decide what form the management of The Coleopterist should take. Perhaps a board of directors charged solely with the production of the journal would be most appropriate. Alternatively, a society with a wider brief, including the organisation of field meetings and other activities, might be what coleopterists want. Subscriber’s views will help to point the meeting in the right direction.
A BELATED NOTE ON CHLOECHARIS DEBILICORNIS (WOLLASTON) (STAPHYLINIDAE) NEW TO BRITAIN

A. B. Drane

Following a request for coleoptera records for the disused railway cuttings at Helmdon, Northamptonshire (SP5841), a visit was made on the 14th August 1989. During the survey, it was discovered that a section of the trackway had been used as a repository for solidified slurry and straw from a nearby farm’s cows. Mixed amongst this refuse was a small amount of mouldy hay, either bedding or feed. Sieving produced an abundance of coleoptera, amongst which were numerous Myrmechatus vaporatorius Guérin-Méneville and this discovery prompted further visits on 15th and 17th August 1989.

On both occasions a small yellow-brown staphylinid which appeared to be a small Medon was taken in some numbers. Attempts at identification using British keys proved unsuccessful. However, using Lohse (1964) the beetles ran down to Hypomedon debilicornis. They were shown to Peter Hammond who kindly confirmed their identity, stating in his inimitable way that he had been ‘waiting for the species to arrive’ as it was a cosmopolitan beetle and widespread across the European mainland. A fourth visit to the site was made on 25th August 1989 and other coleopterists visiting the site later in the month reported that the beetle was still present.

The initial identification was fairly straightforward; deciding on the correct generic name more difficult. Lohse (1964) places the species in the genus Hypomedon Mulsant and Rey in Casey, while Coiffait (1984) uses the genus Chloecharis Lynch which has been split from Hypomedon. Blackwelker (1952) makes Hypomedon a sub-genus of Stenurus Stephens and gives Chloecharis as a synonym of Stenurus. Stenurus but not Hypomedon appears in Kloet and Hincks (1977). Lohse (1989) seems to have resolved the issue by replacing Hypomedon with Stenurus and removing debilicornis to Chloecharis in recognition of Coiffait’s extensive work on the group. While this seems to resolve the name of the beetle under discussion, the debate on the considerable merits of Stenurus over Hypomedon would still seem to be unresolved, at least as far as the French are concerned, but this is certainly beyond the scope of this note. In terms of positioning on the British list there are still difficulties. If Lohse (1989) is followed then Chloecharis will follow Stenurus and precede Lithocharis. If Coiffait is followed, Chloecharis will come after Lithocharis and before Scopalaeus.

Following Lohse (1964), the general appearance and characteristics are those of a small Medon. The colouration is a yellow-brown with the elytra, antennae and legs slightly lighter. The antennae are short, the segments bead-like. The head and pronotum are strongly shagreened and dull, covered in large shallow punctures. Abdominal segments 4-6 are not transverse. The length is 2.5 - 2.8mm. A more detailed description is available in Coiffait (1984).

All specimens discovered at Helmdon were females and this corresponds with experience on the Continent where the species is usually parthenogenetic. Males are known only from Africa (figured in Coiffait).

This cosmopolitan species is doubtfully indigenous to Europe although now well established in ports and centres of commerce from France to Sweden (Silfverberg, 1979). Its appearance in a number of European catalogues from the latter half of the 19th century, albeit mostly references to its occurrence in France, would seem to indicate that it has gradually established itself over the last 150 years. The world distribution suggests links to trade: Argentina, Japan, Thailand, Iran, Egypt, Cape Verde. Coiffait gives references for Tahiti and the Galapagos Islands, also suggesting that the probable area of origin is tropical Africa.

The literature is singularly devoid of habitat information. However, it would seem reasonable to assume transference in vegetable products including bedding and animal feed, especially where there is mould infection. Lohse (1964) cites compost and if this is broadly interpreted as decaying vegetable matter, then the beetle can be expected to occur widely in similar situations in Britain.

Acknowledgements

I would like to thank P. M. Hammond at the British Museum (Natural History) for his kind help in determining the identity of Chloecharis debilicornis and D. A. Lott for the invaluable discussions concerning identity and nomenclature.

References

A. B. Drane

59 Scotland Road, Little Bowden, Market Harborough, Leics. LE16 8AY.
LONGITARSUS LONGISETA WEISE REDISCOVERED AND LONGITARSUS OBLITERATOROIDES GRÜEY (CHRYSOMELIDAE) NEW TO BRITAIN

R. G. Booth

While grubbing at the roots of grass and other plants in an open clearing in Brede High Wood, East Sussex (TQ7920) on 25th September 1992, a single pale Longitarsus specimen was collected. A few months later, when sorting through the day’s captures, I was more than a little surprised to find that I had taken only the third British specimen of Longitarsus longiseta Weise, some 40 years after its previous capture. Allen (1967) described Longitarsus clarus on a single male collected from Blean, Kent in 1951, but later (Döberl, 1987; Allen, 1993) clarus was shown to be a synonym of longiseta. Allen (1967, 1993) also referred to a female specimen, almost certainly this species, which was collected by Donisthorpe from Windsor, but which he was subsequently unable to find among Donisthorpe’s collection.

I visited Brede High Wood again on 24th April 1993, together with John Owen, Howard Mendel and Martin Collier. Although several Longitarsus species were collected, only a single male L. longiseta was found by myself by general sweeping. Of the possible host plants mentioned by Allen (1967) and Mohr (1966), only Glechoma hederacea L. (ground-ivy) grew commonly around the edge of the clearing, but that yielded Longitarsus leucopi (Foudras) and not L. longiseta. John Owen, Peter Hodge and I revisited the site the following weekend, on 2nd May 1993, and specimens of L. longiseta were soon located feeding on the low-growing Veronica officinalis L. (heath speedwell). This discovery was not entirely unexpected because the paper by Mohr (1952), which I had consulted a couple of days beforehand, mentioned V. officinalis as a possible host, although Mohr (1966) had omitted it. Other coleopterists have subsequently taken the species at this site during the summer of 1993. Material collected by myself has been deposited in the British collection in the Natural History Museum.

When alive, the entire elytral suture of L. longiseta is darkened, being slightly broader in the middle portion. After death, the suture fades basally and apically to reveal the more characteristic colouration of the species. The pair of long setae at the apex of the elytra are characteristic but, of course, these may easily be lost or obscured from view.

V. officinalis is a common plant in the UK but, because of its low-growing form, it is difficult to sweep among taller vegetation. There is no reason why L. longiseta should not be found in other localities if this host is searched. The feeding marks left by the adults are small, almost circular holes or brown patches where the surface cells have been scraped away.

While on holiday in Pembrokeshire, Wales, in 1992, I found a single female Longitarsus by grubbing at the base of Thymus sp. (thyme) on the top of the sea cliffs at Strumble Head (SM8941) on 5th August. At the time, it was assumed to be L. obliteratorus (Rosenhauer) but subsequent dissection showed that its spermatheca was atypical compared with material of L. obliteratorus from Surrey. The specimen was later identified as Longitarsus obliteratoroides Gruy, 1973 from the key and figures given by Gruy (1982). My colleague, Michael Cox, and I have since seen five other British specimens of L. obliteratoroides which other coleopterists have kindly sent us to examine, from Cornwall and North Wales, mostly from coastal sites. Both male and female genitalia adequately separate these two species, although externally they are very similar. I have examined all the L. obliteratorus in the Natural History Museum to separate out specimens of the new species. Although L. obliteratoroides is essentially Mediterranean in distribution, Natural History Museum specimens show that it also occurs in northwest France. Thus, its discovery in the west of Britain is not unexpected. A more detailed treatment of these two species is in preparation by Michael Cox.

References

R.G. Booth, International Institute of Entomology, c/o Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD.

RECENT PUBLICATIONS OF INTEREST TO COLEOPTERISTS

OULEMA ‘MELANOPUS’ (CHRYSMELIDAE) IN BRITAIN

R. G. Booth

The attention of British coleopterists is drawn to the work of Berti (1989) who showed that two species existed under the name Oulema melanopus (L.) on the Continent. The only four dissected males which I have seen from the UK were all O. duftschnidi (Redtenbacher, 1874) and not the true O. melanopus. As both species occur widely on the Continent, it seems likely that both ought to occur in the UK, but that still needs to be established for certain.

Reference
R.G. Booth, International Institute of Entomology, c/o Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD.

THE BRITISH LIST:
SUMMARY OF ADDITIONS AND DELETIONS PUBLISHED IN 1993

Derek Lott

This summary is a continuation of the inventory which appeared in previous issues of this journal (Owen, 1993; 1994) and the same format and criteria are followed. The British list is taken to cover the British Isles, i.e. Britain and Ireland. The Channel Islands are not included.

Faunal status codes:
A - species which appear to have arrived in or to have been introduced to the British Isles within the last 25 years or so.
C - native species which have been confused in the past with other species.
D - species, apparently British discovered in collections but without recent confirmation.
N - distinct species apparently native to the British Isles or long naturalised which have been overlooked until recently.
R - reinstated species, considered to be distinct native species by some authorities in the past but not included as such in the 1977 check list.

Part 1 - added or reinstated species

STAPHYLINIDAE

Thinobius longipennis (Heer, 1841) N

Trichiursa immigraa Lohse, 1984 A

Ischnoglossa obscura Wunderle, 1989 C

Lott, D. A., 1993. Ischnoglossa obscura Wunderle new to Britain. Coleopterist, 2: 20. [Previously confused with I. prolix (Gravenhorst) - to distinguish between the two species see Wunderle (1989)]

DERMESTIDAE

Peacock (1993) includes nine species additional to Kloet and Hincks (1977), four of which were listed by Owen (1993). The remaining five are all synanthropic species which have not been found outdoors in Britain. However, outdoor records are given for several species which are listed by Kloet and Hincks (1977) as occurring only under artificial conditions.

CURCULIONIDAE

Trachypheus angustisetulus Hansen, 1915 C

Thryogenes fiorii Zumpt, 1928 C

Part 2 - deleted species

STAPHYLINIDAE

Puthz (1993) considers Stenus exigus Ehrenson to be a short-winged form of S. pusillus Stephens. However, a study of British and Irish examples of S. exigus is required before it can simply be removed from the list.

DERMESTIDAE

Attagena trifasciatus (Fabricius, 1787)

Peacock, E. R., 1993. Adults and larvae of hide, larder and carpet beetles and their relatives (Coleoptera: Dermestidae) and of derodont beetles (Coleoptera: Derodontidae). Handbooks for the identification of British insects, 5(3). [Not recorded since 1839]
CURCULIONIDAE
Rhynchaenus erythropus (Germar)
Morris, M. G., 1993. A review of the British species of Rhynchaeninae (Col., Curculionidae). Entomologist's mon. Mag., 129: 177-197. [The introduction of this species as British was based on leaf mines which Thompson (1994) argued were probably made by R. avellanae]
Rhynchaenus lonicerae (Herbst, 1795)

Acknowledgements
I am grateful to P. M. Hammond and J. A. Owen for help and advice.

References
D. A. Lott
Leicestershire Museums Service, 96 New Walk, Leicester LE1 6TD.

TWO NAME CHANGES TO THE BRITISH LIST OF MELIGETHES STEPHENS, 1830 (NITIDULIDAE)
A. H. Kirk-Spriggs

Several changes in the nomenclature of the genus Meligethes have occurred since the publication of the 'check list' (Kloet & Hincks, 1977), notably those made by Bacchus and Kirk-Spriggs (1991). A great deal of confusion has occurred over recent years as to the correct names to be used for the species we know as Meligethes pedicularius (Gyllenhall) and M. viduatus (Heer). Thankfully, the problem has been resolved by P. A. Audisio (Zoological Department, Naples University, Italy), who has examined the types of all of the palaearctic Meligethes species. The revision by Audisio (1993) has keys in both Italian and English. The synonymy given below is followed in Kirk-Spriggs (in press).

persicus Faldermann, 1837
pedicularius auctt. nec (Gyllenhall, 1808)
sinuans Rey, 1889
tenebrosus Förster, 1849
pedicularius (Gyllenhall, 1808) nec auctt.
aestimabiliis Reitter, 1872
austriacus Reitter, 1871
bituberculatus Förster, 1849
luctuosus Förster, 1849
melanarius Förster, 1849
viduatus (Heer, 1841)

References
A. H. Kirk-Spriggs
Dept. of Zoology, National Museum of Wales, Cathays Park, Cardiff CF1 3NP.
DOES CARCINOPS PUMILIO (ERICSSON) (HISTERIDAE) EXHIBIT ANTHROPOTROPIC BEHAVIOUR?

R. Colin Welch

Andrew Duff (1994) reports a minor invasion by Carcinops pumilio through the kitchen window of his house at Keinton Mandeville, Somerset, in the early evening of 28 June 1992. This, I believe, was the hottest day of the year with temperatures of 29-30°C recorded in several parts of the country. He goes on to ask if anyone else has had a similar experience. I immediately recalled that five weeks prior to Duff's observation, on the evening of 25 May 1992, I had noticed a number of Coleoptera on the wing over a three metre wide strip of lawn between an old field pond and the north side of my house at Hemington, Northants. (TL091832). A few waves of a sweep net revealed most to be Carcinops pumilio. Upon entering the open patio doors into my lounge, I found the white shag-pile carpet speckled with further specimens. Many more were observed flying about the room and settling on the insides of the windows and window sills, and I counted in excess of 60 individuals.

My first reaction was that they were emerging from something decaying, within the house, but concluded that they had flown in from the garden and were trying to return there. Their origin remained a mystery, but this proved to be the hottest Spring Bank Holiday on record, with temperatures reaching 28°C. Two days later I noted five Carcinops flying in the lounge during the evening. Although the patio doors are in a north-facing wall, during the summer months they receive late afternoon and evening sunshine and could offer some support to Duff's theory that such occurrences are linked to sources of infra-red radiation. The previous year I recorded two Carcinops on the lounge window on the evening of 7 July 1991, and a single specimen on the lounge carpet, just inside the patio doors, on 26 August 1991. On 12 July 1991 Mr Roy Townsend, an Environmental Health Officer for Peterborough City Council, collected 37 C. pumilio from the floor of a barracks at R.A.F. Wittering, Cambs. (TF0502), but I have no further details.

I have been keeping details of all the Coleoptera recorded in my garden and house, since it was built 21 years ago, and I see that two thirds of the Carcinops recorded during that period have been taken in or about the house:—

- 1.xi.73, 1 in bedroom; 19.viii.73, 1 at light in front porch; 3.vii.77 & 29.vii.84, 1 on kitchen window sill; 7.vii.84, 1 on wing above lawn on west side of house; 24.vi.92, 1 in bath.

In addition I have the following records from within my rural garden which for many years has been surrounded by an arable prairie:

- 14.vii.80, 1 on dead hedgehog; 11.vi.82 & 4.vii.82, 1 in pile of 'weeds' removed from pond and left overnight on bank or in wheelbarrow; 5.viii.92, 1 under dead greater spotted woodpecker on top of compost heap; 18.vi.92 & 15.vi.93, 1 in muddy grass margins, etc. in compost heap; 5.vi.93, 21 in henfed nest box, occupied by stock dove; 21.vi.93, 1 in nest box occupied by kestrel.

I have only five records of C. pumilio from other locations, four of which are from synanthropic habitats, although two are at the margins of ancient woodland/parkland sites:-

My only record of Carcinops from a true 'wild' location is:

- 9 ix.73, Scotter Head N.R., Norfolk (TF831464), 1 in dead seal on sandy beach (Welch, 1982).

References

R. C. Welch

Institute of Terrestrial Ecology, Monks Wood, Abbots Ripton, Huntingdon, Cambs., PE17 2LS.

CARCINOPS PUMILIO (ERICSSON) AT LARGE

John Owen

I was interested in what my friend Andrew Duff wrote about this beetle (Duff, 1994). My own experience with this cosmopolitan species encompasses three micro-habitats - birds' nests in trees, compost/manure heaps and carrion. The records are as follows:

- N.E. Scotland, July 1983, several in osprey's nests from three sites, Richmond Park, October 1987, 1 ex. in nest in rot hole in oak; Oxshott, Surrey, May to August 1975, about 20 examples in artificial birds' nests containing chicken dung, hung in a deciduous wood (Owen, 1975); Wisley Common, Surrey, May 1976, a few in rotting grass; Headley, Surrey, March 1982 and December 1985, several in a manure heap in a copse; Helmdon, North Hunts, October 1989, a few in rutting straw dumped on a disused railway line; Epsom Downs, Surrey, May to October 1993, several in rotting grass at the edge of a copse; Box Hill, Surrey, September 1991, one example is dead fox.

My contact with the species in the wild seems pretty well to have duplicated that of others. Thus Walker (1896) found a specimen in an owl's nest near Sheerness and Donisthorpe (1939) recorded six in a bird's nest in a hole in a tree at Windsor. Spittle (1949) found examples in two barn owls' nests and in a squirrel's den (Spittle, 1962). It has also been recorded from a red kite's nest in Wales (Fowles and
Owen, 1990). There are a number of records for the species from deep-pit poultry houses (e.g. Bills, 1973; Green, 1980) - a qualitatively similar, albeit man-sided, habitat. Guichard (1936) found it in numbers in rotting potatoes. Walker (1935) reported that it was 'not rare' in heaps of decaying, cut grass and Welch (1968) similarly recorded it from cut-grass in Monks Wood. Anderson (1992) has found the beetle in a compost heap at Newforge in Northern Ireland.

The species has also been found in the wild in animal remains. Blatch and Homer (1887) recorded 2 examples taken in carrion in Sherwood Forest in October 1886. This is presumably the report about which my friend expresses some reserve. Blatch and Homer, however, were both careful and competent workers and there seems no need to doubt their record.

The factors which enable insects to locate situations in which they can feed or breed largely remain to be determined. An experiment carried out with an artificial nest, however, suggested that chemical tropism operates in some cases of birds' nest beetles (Owen, 1976). Thus, three species of birds' nest beetle including Carcinops were found to be attracted to an artificial nest containing soil to which some ammonium carbonate had been added whereas no beetles were attracted to a control artificial nest containing soil alone. Ammonium carbonate slowly decomposes to release ammonia gas which is a major product of decomposing animal and vegetable matter, including dung and other debris in birds' nests. It could be simply that Carcinops is attracted to sources of ammonia. A reaction to infra-red radiation as suggested by my friend may be a factor in attracting Carcinops to houses but some controlled experiments would seem necessary before this can be accepted.

Acknowledgements

I thank Mr Stewart Taylor for providing material from osprey's nests, Mr Peter Hodge for taking me to the site at Helmdon and the Superintendent, Richmond Park for permission to study beetles in the park. In case I don't get asked back, I hasten to emphasise that I am not for a moment suggesting that it was chemical tropism which attracted beetles to the Duff's kitchen - unless, of course, that's where they keep their 'household ammonia'!

References

J. A. Owen, 8 Kingsdown Road, Epsom, Surrey KT17 3PU.

CARDIOPHORUS GRAMINEUS (SCOPOLI) (ELATERIDAE) ETC., NEAR MONMOUTH c.1860: A NEW COUNTY RECORD AND THE LAST KNOWN FOR BRITAIN

A. A. Allen

My friend Dr R. R. Ulthoff-Kaufmann kindly sent me some loose photocopied pages from The Weekly Entomologist - a journal I had never heard of, at least under that title; they bear the date 1863. They include part of a list of beetle captures 'near Monmouth' by Thos. Parry of Merthyr Tydfil, in which some notable species figure, by far the most interesting and remarkable being the click-beetle Cardiophorus thoracicus. This is the unmistakable Cardiophorus with bright red thorax included in all our older works and now known as C. gramineus. It is presumed long extinct. The records given by Stephens (1830: 270) and cited by Fowler (1890: 85) and others are the only ones previously known (Mendel, 1988: 7), extending across most of southern England with the addition of Norfolk and Cumberland - remarkable, as Fowler comments, for a species even in his day 'not taken for very many years'. The beetle is so distinctive that it seems impossible to doubt the records, including the present one.
Those of Stephens were published in 1830 and seem likely to relate to a period extending from around the turn of the century up to his own day. No further ones, however, were added in his ‘Manual’ (1839). They do not include Monmouthshire (‘Somersetshire’ is the nearest county specified), though he does add ‘&c.’. Parry’s Monmouth record has evidently been overlooked or forgotten, so I should like to call attention to it here.

Unfortunately, no data are given; the entry is one in what is very nearly a bare list. Parry’s capture is, however, easily the latest in Britain that we know of. It can be dated only within a rather wide margin of probability, at a guess around 1860, which would postdate any of Stephens’ records by about thirty years. It is the only record reaching into the second half of the century.

The list includes also Corymbites castaneus (now Aonistus castaneus (L.)), for which a locality is indicated: ‘At Trelleck, near Monmouth’; those who know their ‘Fowler’ will connect this with his record (1890: 111) ‘Monmouth, under stones (Kuper)’. C. cupreus, pectinicornis, and tessellatus (sic) may be of minor interest as Monmouth records, but the last (=Acienicerus sjaellandicus) appears to be the first for the county (Mendel, 1988: 54). The entry Cretonychus rufipes puzzled me until I realized that it referred to the familiar insect which for over a century we have called Melanous rufipes!

Finally may be mentioned Trichius zonatus, stated as from Neath and Swansea. This could be of interest in the light of Fowler’s discussion (1890: 61-2) of the question of T. zonatus in Wales, to this day apparently not fully resolved. The specific identity of Parry’s specimens cannot, however, be assumed as certain. (I took T. fasciatus (L.) in the woods near Monmouth, in 1945.)

References
A. A. Allen
49, Montcalm Road, Charlton, London SE7 8GQ.

A PROVISIONAL KEY TO WEEVILS OF THE GENUS HYPERA (GERMAR) (CURCULIONIDAE) RECORDED FROM BRITAIN

A. P. Fowles

Sixteen species of Hypera have been recorded in Britain, although arundinis (Paykull) has not been seen this century and is now regarded as extinct. Hypera is a distinctive genus of medium sized weevils (range 3-9mm) with a characteristic facies and yet there are undoubted difficulties experienced with the identification of certain species. Joy (1932) is the most commonly used key to British weevils but only fourteen species of Hypera are included. The identifications of diversipunctata (Schrain) and meles (F.) are covered by Kevan (1960) and Allen (1972) respectively. Joy’s typical use of comparative characters can cause problems in some cases if access to reference specimen is not available. As Kevan pointed out ‘literal interpretation of Joy’s key could be unintentionally misleading’. This has led to the genus gaining a reputation of being ‘difficult’ and errors of identification are apparent in many collections.

Several species (e.g. punctata (F.), pastinacea (Rossi), arator (L.)) are quite distinctive but three pairs of species are very similar in appearance and their identification is prone to error. Kevan provided useful characters for the separation of rugicollis (L.) and pollux (F. (=adpersa) but nigrirrostris (F.); vonnides (Chekolat and postica (Gyllenhaal) fuscoconicera Marsham still present considerable problems.

The following key is an attempt to make the confident identification of Hypera easier, without undue need to refer to voucher material. I have incorporated characters from the literature where these seem reliable and clear. Characters for the separation of nigrirrostris and vonnides are basically those of Kippenberg (1983). The two species appear reasonably distinctive in a series but I have been unable to find any characters that are reliably diagnostic. Nor is it easy to construct a couplet that reliably separates postica and fuscoconicera. I do not share Kevan’s confidence in the shape of antennal segments 5-7 as they can be quite variable in postica. The shape of the pronotum, at least in the specimens I have examined, appears to be more reliable and readily appreciated. However, caution should be exercised with the determination of these two species. It should be borne in mind that fuscoconicera is scarce (there are no records from Wales, for instance) and possibly confined to Medicago spp. (medicks) in Britain, whilst postica is locally common throughout and occurs on a wide range of Leguminosae (including Medicago).

One character which might possibly separate postica and fuscoconicera in Britain is size. Kevan indicates that there is a considerable overlap in the size of these two species but this has not been apparent in my own investigations. I have measured thirty-three British specimens of postica and twenty-one of fuscoconicera and found that the latter is consistently larger (postica = 4.0 - 5.3mm, fuscoconicera = 5.8 - 6.7mm, excluding rostrum). Both Joy and Kippenberg also note that postica is the
smaller species but Kippenberg gives 5.0mm as the minimum for *fuscoacinerea* and hence there is a possibility of confusing large *postica* with small *fuscoacinerea*; perhaps continental *fuscoacinerea* are smaller than British specimens? I would be grateful if readers with material of the latter species would measure their specimens and let me have details.

Measurements given in this provisional key follow the convention of ignoring the rostrum, i.e. measurements are taken from the front of the eyes to the apex of the elytra. For each species, the size range in the couples represents the extreme of variation given by Joy and Kippenberg or found in my own studies. Only in the case described above do my own measurements differ sufficiently from the published ranges to be of possible significance for identification.

Note that terminal specimens of some species do not have fully developed bifid scales and dark patches on the elytra may be inconspicuous. Great care must be taken in determining terminal specimens.

This key is intended as an aid to the identification of *Hypera*; an attempt to take some of the uncertainty out of the task of naming specimens of a frequently ignored genus. It is, however, a provisional key based on the detailed scrutiny of just 145 specimens of fifteen species (I have not seen *arundinis* and the characters given for this species are taken from the literature). Several species exhibit a range of variation in morphological features and it is possible that the couples do not account for all possibilities. I would therefore be grateful if readers using this key would let me know if it is successful or if they have any constructive criticism that could assist with its improvement.

1. Recumbent scales on elytra truncated at tip, or, at most, shallowly concave (Fig. 2) 2
 - Recumbent scales on elytra bifurcate, ending in two distinct sharp points (Fig. 1) 6

2. Elytral interstices with long sharp setae, erect or semi-erect, about three times as long as recumbent scales. Hind coxae larger, almost as long (front to back) as remaining length of first sternite behind coxae (Fig. 3). Tibuae reddish or infuscated 3
 - Elytral interstices with a row of slightly raised blunt scales, about twice as long as recumbent scales. Hind coxae smaller, distinctly less than length of first sternite behind coxae (Fig. 4). Tibiae black 4

3. Rostrum short and broad, less than three times as long as wide (Fig. 5).
 Antennae inserted close to tip of rostrum. [Mid-line of scales on pronotum indistinct. Elytra broad, brown with small dark blotches and a pale patch towards the apex of the fifth interstice. 6.0 - 9.0mm] ?
 - Rostrum longer and narrower, more than three times as long as wide (Fig. 6).
 Antennae inserted at a point about 3/4 of the length of the rostrum. [Pronotal mid-line distinct. Elytra brighter, pale patches more widespread, with contrasting darker blotches on interstices. There is usually a pale patch at the middle of each elytron, covering interstices 6-8. 5.0 - 7.0mm] ?

4. Elytra unicolorous yellowish. All interstices with several rows of slightly raised scales. Pronotum as broad as elytra over shoulders. 4.5 - 7.5mm ?
 - Elytra not uniformly coloured, some interstices with small dark marks, interstices with only one or two rows of raised scales. Pronotum narrower than elytra over shoulders ?

5. Apex of rostrum pubescent. Thorax (underside of head behind base of rostrum) usually with broad scales, as sides of elytra and pronotum (Fig. 8), rarely with throat scales as *polix*. Elytra usually with scattered dark marks. 4.0 - 6.0mm ... ?
 - Apex of rostrum with apical setae only. Thorax with narrow scales, as underside of rostrum (Fig. 7). Elytra frequently with alternate interstices dark and light. If elytra mottled with scattered dark marks, then third interstice predominantly pale. 4.5 - 6.5mm ?

6. Scales on elytra split to base, hair-like, forming an inverted V (Figs. 1a, 1c).
 Central strip of abdomen (area mid dorsal and apex) with setae or acuminate scales only (Fig. 9). Anterior face of femora with setae or scale-like pubescence only (except *diversipunctata*) (7)
 - Scales on elytra not split to base (Figs. 1b, 1d). Centre of abdomen with bifurcate scales, with or without setae (Fig. 10). Anterior face of femora with bifurcate scales (except *apiculata*) ?

7. Elytral interstices with two or three rows of slightly raised shorter scales. [Pronotal disc with scale-like pubescence only. Pronotum uniformly rounded at sides, eyes wide apart (Fig. 11). Legs uniformly dark. Apex of elytra produced and with a sharp, downward-projecting tooth on inner side at tip. 5.4 - 7.0mm] ?
 - Elytral interstices with a single row of conspicuous erect setae ?

8. Pronotal mid-line with bifid scales (Fig. 12).
 Elytra uniformly covered with bright reddish, yellow or green scales, or with duller brown scales. Pronotum quadrate, evenly rounded at sides ?
 - Pronotal mid-line without bifid scales, with setae or scale-like pubescence only (Fig. 13). [A few bifid scales are occasionally present at base of pronotum]. Elytra with dark marks at side or with scattered small dark marks. If dark marks absent, then pronotum clearly transverse and dilated ?

9. Scales on elytra bright green, yellow or reddish, rarely dull brown. Any motting only at apex of first interstice. Setae of elytra and pronotum shorter and less erect. White setae of interstices 1 & 3 chiefly on rear half of elytra. Pronotal mid-line slender and bright for most of its length. 3.0 - 4.2mm ?
 - Elytra scales duller, brownish, not brightly coloured. Frequently motting with dark and light patches on declivity. Setae longer and more erect. Row of white setae on interstices 1 & 3 begins before the middle of the elytra. Pronotal mid-line not clearly defined, usually only apparent immediately before front and hind margins. 3.7 - 4.8mm ?

10. Pronotum clearly transverse, strongly dilated at sides and contracted before anterior margin (Fig. 14). Elytra with scattered small, dark marks, or uniformly coloured. 3.7 - 5.0mm ?
 - Pronotum quadrate or slightly transverse, sides evenly rounded from base to apex (Figs. 15 & 16). Elytra with large dark marks at side. Dark mark at base small, less than one-third length of elytra. 2.9 - 4.0mm ?

11. Venusta
11. Pronotum very transverse, much shorter than length of rostrum. Pronotum and elytra with long erect setae (Fig. 17). (Recumbent scales on elytra and pronotum notched at apex, sharp points less than half length of scale. Alternate interstices pail with small, black, quadrate marks. Legs black. 3.5 - 5.5mm)..............pastinaceae
- Pronotum transverse to quadrate, longer than or as long as rostrum. Pronotum and elytra with shorter, semi-erect setae or with raised scales (12)

12. Front margin of pronotum concave, anterior angles produced (Fig. 18). Front tibiae with tooth at middle of inner side (pet view from below as can be obscured by setae from above, particularly in the female). Pronotal mid-line distinct. Legs black. Elytra with interrupted light and dark bands. 4.2 - 6.1mm..........................arator
- Front margin of pronotum straight. Front tibiae without tooth. (13)

13. Elytra with slightly raised elongate scales on each interstice. Tibiae black. Anterior face of femora and pronotal disc without bisericate scales, only setae and scale-like pigmentation present. [Elytra with scattered small dark marks throughout. Recumbent scales on elytra slowly notched, as pastinaceae (Fig. 1d). 4.4 - 6.0mm].................................susjelesi
- Elytra with conspicuous semierect setae on each interstice, especially on declivity. Anterior face of femora and pronotal disc with some scales bifurcate. Tibiae usually reddish, sometimes infuscated. (14)

14. Pronotum dilated, strongly rounded at sides, slightly transverse (Fig. 19). Dark mark at base of elytra small, less than one-third length of elytra. Pronotal mid-line broad and distinct. 3.5 - 5.0mm..........................plantaginis
- Pronotum quadrate or transverse. Dark mark at base of elytra larger, more than half length of elytra. Pronotal mid-line narrower, similar in width to first funicular segment. (15)

15. Pronotum almost as long as wide, greatest width at or before middle. Sides of pronotum evenly rounded; less contracted in front. Ratio of length of anterior margin (a) to posterior margin (b) greater [range a/b = 0.63 - 0.72] (Fig. 20).
- Pronotum clearly wider than long, greatest width shortly behind middle. Sides of pronotum bulging, contracted towards anterior margin. Ratio of length of anterior margin (a) to posterior margin (b) smaller [range a/b = 0.53 - 0.66] (Fig. 21).

References

KEVAN, D. K., 1960. Further Scottish records of Phytonomus diversispunctatus (Schrank) (=elongatus Paykull) and its comparison with allied species; also notes on the identification of P. ruicus (L.) and P. aduersus (F.) (Coleoptera, Curculionidae). Entomologist's mon. Mag., 96: 35-38.

1. Typical bifurcate elyral scales: (a) diversispunctata, (b) susjeczio, (c) nigrrostris
 (d) pastinaceae, (e) plantaginis.
2. Typical truncate elyral scales: (a) punctata, (b) pellus, (c) rumicis.
5. Head of punctata. 6. Head of dasci. 7. Underside of head of pellus.
BEMBIDION OCTOMACULATUM (GOEZE) (CARABIDAE) IN NORFOLK: A SECOND 20th CENTURY BRITISH LOCALITY

Mark G. Telfer and Brian C. Everham

On 23rd May 1993, a single specimen of Bembidion octomaculatum was collected by MGT at the margin of a small (c. 25m radius) pond dug in poorly-draining calcareous clay on Great Carr Range, Stanford Training Area, West Norfolk (TL852929). The specimen was found while hand-searching through debris on a shallowly-shelving, unvegetated section of the pond’s bank, open to full sun. Other Carabidae found in this way included Notiophilus rufipes Curtis, Elaphrus cupreus Dufschmid, E. riparius (L.), Dyschirius aeneus (Dejean), D. laedersi Wagner, Bembidion articulatum (Panzer), B. clarki Dawson, B. dorii (Panzer), B. oblomum Sturm, Agonum marginatum (L.), A. moestum (Dufschmid), Anisodactylus binotatus (F.) and Acupalpus conspersus (Dufschmid).

Until the discovery of a population in East Sussex in 1992 (Jones, 1992) the species was thought extinct in Britain, there having been no records since 1887. The discovery of a second locality in the year following the species’ rediscovery raises some interesting questions. The Great Carr Range pond was thoroughly searched on 23rd May and 12th September but yielded only the one specimen. Considering also the size of the pond, it seems unlikely that it supports an established breeding population. However, the accompanying carabid fauna suggests a high quality site. A recent immigrant would be no more likely to turn up at a high quality site than a low quality site. I suspect the Stanford individual was a representative of a recently established population, possibly centred on one of the other small wetlands in Breckland. Further fieldwork will be needed in the coming season to assess the status of this species in the region.

Acknowledgements

Thanks are due to Tony Vine and Henry Arnold for arranging access to the Stanford Training Area, and to Dr Martin Luff for confirming the identity of the specimen.

Reference

Mark G. Telfer
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ.
Brian C. Everham
Biological Records Centre, ITE Monks Wood, Abbots Ripton, Huntingdon PE17 2LS.

Acknowledgements

I am grateful to Steve Judd for arranging access to specimens in the Entomology Department (Liverpool Museum) and to John Owen for his valuable comments on an earlier version of this key.

A. P. Fowles
Countryside Council for Wales, Plas Pentybos, Ffordd Pentybos, Bangor, Gwynedd LL57 2LQ.
DYSCRHIUS ANGUSTATUS (AHRENS) (CARABIDAE) IN SCOTLAND AND NORTHERN ENGLAND

R. M. Lyszkowski, J. A. Owen and M. Sinclair

In his note on the capture of Dysscrhius angustatus from the Wampool Estuary, our friend Dr Key (1993) states that 'all records subsequent to 1970 have been from Sussex'. As it happens, this is not so. Thas M.S. took a male D. angustatus on the 20th May 1990 in the course of a prolonged search for Carpelimus schneideri (Ganglbauer) on the banks of the Wampool, near Kirkbirtle, Cumbria (see Owen & Sinclair, 1991). This find was reported to the local N.C.C. office. On 4th July 1991, R.M.L. and J.A.O. recorded several specimens of D. angustatus on the banks of the River Nethy, near Nethy Bridge, Morayshire in a mixed colony of Bledius arcticus Saltberg and B. longulus Ericsson, with C. gallicus (Gravenhorst) nearby. On 22nd July 1991, R.M.L. found the species on the banks of the River Spey near Fochabers, Morayshire with the same Bledius species. Lastly, as far as we are concerned, on the 30th May 1992, R.M.L. and M.S. found the species quite abundant at Kirkbirtle, Cumbria in company of Bledius atricapillus (German). With so many active coleopterists about it is always difficult to know what has recently been recorded and some caution in wording reports for publication would seem prudent.

References

KEY, R.S., 1993 Dysscrhius angustatus (Ahrens) (Canabidae) and other Coleoptera from the Wampool Estuary, Kirkbirtle, Cumbria. Coleopterists, 2: 29 - 30.

R.M. Lyszkowski, 'Glenwood', 57, Henderson Street, Bridge of Allan, Stirlingshire FK9 4HG.

J.A.Owen, 8 Kingsdown Road, Epsom, Surrey, KT17 3PU.

M.Sinclair, 'Gimigoe', Main Street, Denholm, Roxburghshire TD9 8NU.

AGRIILUS SINUATUS OLIVIER (BUPRESTIDAE) - SUMMARY OF KENTISH RECORDS

N. F. Heal

On 6th August 1991 a single adult of this species that I noticed resting on a discarded plastic container, in very hot sunshine, inspired me to investigate an old hawthorn hedge, nearby, bordering the grounds of the former Mabledon Hospital, Darenth (TQ5672). I succeeded in beating out a further specimen after some thirty minutes search. Its suspected breeding status was confirmed in 1992, when I beat out single specimens from the same hedge on 8th and 15th July. Despite extending the search to several other hawthorn hedges in the general vicinity, during July and August, no further specimens were found.

At the time it was thought not to have been previously recorded in the county. However, subsequent investigation has revealed the existence of two previous (unpublished) Kent records. A previously unidentified specimen that I have obtained was captured by Dr G. H. L. Dicker on 23rd July 1985 at Cobtree Manor, Aylesford, near Maidstone (TQ7458). No details of its capture are known, but the general area includes extensive woodland at the foot of the North Downs escarpment, within which there are many very old hawthorns from which it probably originated. On 29th July 1990 Adrian Fowles reports finding a number of ancient hawthorns in parkland at Scadbury Park, near Chislehurst (TQ4569) riddled with larval workings. This site which although no longer within the current administrative county boundary of Kent nevertheless lies within Watsonian V.C. - West Kent.

These are the only records of which I am aware for the county and the species has to be regarded as very rare in Kent, even though its national status has been revised to 'Notable A' in the recent JNCC 'review' (Hyman, 1992).

Reference

N. F. Heal, 44 Blenheim Avenue, Faversham, Kent ME13 8NW.

AN UNUSUAL SPECIMEN OF SCIAPHILUS ASPERATUS (BONSDORFF) (CURCULIONIDAE)

W. J. Read

I found a rather strange-looking specimen of Sciaphilus asperatus (illustrated here) in Clints Quarry Nature Reserve, near Egremont in West Cumbria (NY0012) on 9th March 1985. The weevil was taken in a deep accumulation of leaf litter and humus at the base of some large rocks in the south-west corner of the quarry.

The beetle is perfect apart from the curious tibial outgrowths on all six legs. There is a small, inwardly-pointing spine on each of the anterior tibiae, a projection on the outer face of the left middle tibia and another, at right angles to the outer face, on the right middle tibia. The left hind tibia has a sharply pointed spine on the outer face at approximately the middle and the right hind tibia has a large, blunt projection on the outer face and a small rounded swelling on the inner face at about the middle of the tibia, which is quite strongly bent at that point.

Deformities of the exoskeleton in the Coleoptera have been widely reported in the literature. Cockayne (1926; 1930a; 1930b) and Balazuc (1948) describe many specimens of beetles with deformed legs, antennae, wings etc. Ashworth (1927) describes a fossil specimen of Plateumaris sericea (L.) with an unusual deformity of the right eye socket.
Acknowledgements

I would like to thank the Cumbria Trust for Nature Conservation, through Miss Kerry Milligan (Conservation Officer), for kindly allowing me to visit Clints Quarry and collect specimens.

References
R. W. J. Read
43, Holly Terrace, Hensingham, Whitehaven, Cumbria CA28 8RF.

RHYNCHAENUS POPULICOLA (SILFVERBERG) (CURCULIONIDAE): FURTHER OCCURRENCES IN KENT

N. F. Heal

Since Mr J. A. Parry (1981) first confirmed this as a British species (as R. populi F.) on the basis of Kentish specimens taken in 1952 and 1970, I have not heard of a subsequent sighting of the species. I therefore wish to place on record my finding of a further four specimens.

Two were knocked out of poplar, one at Stodmarsh NNR (TR2260) on 14th October 1984 (Heal, 1986) and another at Nadel, near Faversham (TR0363) on 6th July 1986. The latter specimen was found in a windbreak to a commercially managed orchard which must receive a fairly regular spray of insecticide and which also had the outgrowth regularly cut back very short. On 23rd May 1993 I beat a further specimen out of a large Salix alba L. (white willow) on the coast at Lower Halstow (TQ9567) and another from the same group of trees on 16th August 1993.

All British specimens have so far been taken in vice-county 15 which might suggest a migratory origin, although I personally feel it is either surviving at a very low population density or has some peculiarity of lifestyle that has yet to be understood. Certainly, the finding of two specimens at the same restricted location some three months apart is, perhaps, evidence of at least some stability of population.

Reference

N. F. Heal
44, Blenheim Avenue, Faversham, Kent ME13 8NW.

A NEW ECOLOGICAL NICHE FOR GIBBIUM AEQUINOCTIALE BOIELDIEU (PTINIDAE) IN BRITAIN, AND A RECONSIDERATION OF LITERATURE REFERENCES TO GIBBIUM SPP.

Barry Constantine

My brother, Andrew Constantine, a miner at Silverwood Colliery (SK475942) on the outskirts of Rotherham has, for several years, told me of beetles living down the mine. He has always been reluctant to collect specimens but was finally persuaded to capture 4 beetles for me in the last week of October 1993. They were identified as the flightless ptinid Gibbiium aequinoctiale Boieldieu, also known as G. einsteini Bellés (Bellés, 1980).

There is some confusion in the literature concerning Gibbiium species in Britain. The Central Science Laboratory at Slough has bred G. aequinoctiale Boieldieu for over 40 years, but had mistakenly called it G. psylloides Czemiński. Consequently,
biological studies of G. psylloides (e.g. Howe & Burges, 1952) actually refer to G. aequinoctialae. Because of this, later references to the biology of G. psylloides (e.g. Hickin, 1964) also probably refer to G. aequinoctialae. A major survey of worldwide records of these two species (Belles & Halstead, 1985) suggests that G. psylloides is principally Palaeartic and found mainly in the Mediterranean region, whereas G. aequinoctialae is much more cosmopolitan. Many of Aitken's (1975) North American records for G. psylloides also probably refer to G. aequinoctialae (Belles & Halstead, 1985).

Zacher (1948) first suggested that these two species may have been confused but the head character he gave for separating them is comparative and difficult to use. Belles and Halstead (1985) used additional head characters including that described by Hisamatsu (1970) although without material for comparison even these can be open to misinterpretation. The difference in male genitilia illustrated by these authors, and first described and illustrated by Hisamatsu (1970), provides the only infallible way of distinguishing the species. G. psylloides appears to be the less common species in Britain (D. G. H. Halstead, pers. comm.). I am, therefore, writing this paper on the assumption that many of the British references to G. psylloides in pre-1985 sources, actually refer to G. aequinoctialae.

Because there are no toilet facilities down the mine, the men use disused roadways instead and the beetles are widespread in all roadways used for this purpose. The roadways are at approximately 780m OD and conditions are not what one would normally consider as ideal for pinids, although G. aequinoctialae is in a better position than most in adapting to the unusual circumstances underground. Hickin (1964) says that G. psylloides (Aequinoctialae) thrives in drier conditions than other pinids, and at only 40% relative humidity 80% of eggs laid in flour produced adults. It is also a long-lived beetle, a longevity of 18.5 months having been recorded.

The site where these particular beetles were collected is in a disused roadway which is 3m high and 3m wide, with coal walls and crumbly mudstone floor and ceiling. Other roadways are similar but have concrete floors. Air is drawn down a shaft, circulates through the mine becoming warmer as it passes all the machinery and exits at another shaft. Airflow around the mine is controlled by triple air-doors in the connecting passages. Temperatures in different parts of the mine vary greatly because of this. I have no specific data on temperature or humidity in the roadways, but have been told that both a jersey and coat are needed to keep one warm in the roadway where the beetles were collected (A. Constantine, pers. comm.). The bits of mudstone that were gathered up with the beetles were dry, dusty and very crumbly. The roadways are normally in total darkness except when miners travel through them at the beginning and end of shifts.

The beetles appear to complete their whole life cycle, on or within human faeces, hence my brother's initial reluctance to turn collector. They occur in profusion in these roadways used as latrines but are absent elsewhere underground. The miners understandably take their meal breaks well away from these roadways, so there is no food debris around for the beetles to feed on. They seem to thrive, though, as there are hundreds of specimens in each roadway. No other species of beetles (or any other insects) have been seen. There is the occasional bat (species unknown) and beetles have been known to feed on bat droppings (Crowson, 1981), but these bats, and consequently their droppings, are very scarce and certainly not enough to support a colony of beetles. Until the late 1960s, pit ponies were kept underground at Silverwood and animal feed, hay and straw were brought down to them. Joy (1932) records G. psylloides (Laenoctialae) from seeds and vegetable matter; Hickin (1964) mentions seeds, grain and grain products as their main source of food, as does Linssen (1959). Animal feed appears to be the probable origin of the beetles in the mine, but how long they have been in the mine will probably never be known. They were certainly in residence when my brother started working at Silverwood seven years ago, but the mine was opened in the 19th century and presumably pit-ponies and their accompanying feed were in the mine from that time.

Gibbon species are not usually cavernicolous although they have been found in several semi-subterranean habitats such as G. psylloides (Laenoctialae) in a beer cellar (Fowler & Donisthorpe, 1913). The species has also been found in latrines in North America (Buckland, pers. comm.). G. aequinoctialae has been found in other coal mines, in Staffordshire and Durham (Belles & Halstead, 1985), although it is not known if these records represent breeding colonies or odd specimens.

Acknowledgements
I would like to thank Andrew Constantine for first bringing the existence of this community to my attention and for collecting the specimens; Dr D. G. H. Halstead for dissecting and identifying one of the specimens and for his invaluable help in the preparation of this paper; Dr P. C. Buckland for providing me with information about the North American record and for having previously supplied me with a copy of one of his earlier papers which first kindled my interest in stored products pests.

References

SUBSCRIBER’S NOTICES

RECORDS WANTED - I am carrying out research into the occurrence and distribution of Eupatrotis caucicus Lindemann and E. tiliae (Panzer) in Britain. I would be very grateful for any records, historical or modern, so that the status and distribution can be clarified. All contributions will be suitably acknowledged. It would be useful to know whether specimens of tiliae have been checked against the possibility of their being caucicus. In the event of uncertainty, I am willing to identify specimens and return them.

Tony Dyer (Tel: 0858 465215)
59, Scotland Road, Little Bowden, Market Harborough, Leics LE16 8AY.

PLEA FOR WILTSHIRE RECORDS - I have recently taken on the role of Coleoptera recorder for Wiltshire and would be delighted to hear from anyone who has had experience of collecting in the county. Comments such as 'the paucity of entomological records from Wiltshire' (Brian Moore, 1956) and 'Wiltshire has been badly neglected by Coleopterists' (Mike Morris, 1973) make clear that there is a great deal of work to be done. This is surprising given the proximity of the county to London, the large number of potentially excellent sites, particularly on the chalk in the south, and the wealth of records for surrounding areas. Do please contact me if you can help, or, if you are considering a collecting trip, I would be pleased to try and offer information about interesting localities.

Michael Darby (Tel. and Fax 0722 714295)
The Old Malthouse, Sutton Mandeville, Salisbury, Wiltshire SP4 0NN.
[Readers please note Michael's change of address]

RECORDS WANTED - Records are required of any Coleoptera thought likely to be additions to the Irish list. A revised and updated checklist of Irish Coleoptera, with annotations, will be submitted for publication towards the middle of 1994. This will update the list of Johnson and Halbert (1902, Proc. Roy. Ir. Acad., 6(3): 535-827) and will give details of first records of species added to the list since 1902. There are probably many readers of the Coleopterist who have holidayed in Ireland and collected Coleoptera but have not been able to find out whether the species they have are currently known from Ireland. To assist with this, information on the composition of the current list may be obtained by writing to the address(es) below or by telephoning. All eventual contributors to the list will be duly acknowledged.

Roy Anderson, 1 Belvoir View Park, Newtownbreda, Belfast BT8 4BL (evening; tel. 0232 64425) or Department of Agricultural Chemistry, Queen's University Belfast, Newforge Lane, Belfast BT9 5PX (daytime; tel. 0232 661166 ext. 2347).
SPECIMENS WANTED - I am trying to build up a reference collection of beetles to use in the identification of beetle fragments found in Quaternary deposits in Britain. Although the majority of Quaternary species found are still living in Britain, several hundred are now extinct. I can supply a list of the relevant species. If anyone can let me have specimens of any of them I would be most grateful and will of course repay all postal charges.

Barry Constantine (Tel: 0262 468198)
4 The Green, Skipsea, East Yorkshire YO25 8SZ.

JOURNAL CONTENTS

M. J. Cotter

THE ENTOMOLOGIST'S MONTHLY MAGAZINE
VOLUME 129 (1993)

Jan/Feb/Mar/Apr (Nos. 1544-47)
New species of Agathidium Panzer and Liodropia Reitter (Leiodidae) from Sulawesi. F. Angelini & J. Cooter 67-79
Evidence of feeding by Apion criquetum Walton (Apionidae) on Mountain Sorrel (Oxyria digyna (L.) Hill). D. Horsfield. 48
‘British Orthocerus Weevils’: corrections and new information (Curculionidae).
M. G. Morris .. 23-29
A modern record of Aphodius brevitarsis Erickson (Scarabaeidae). P. F. Whitehead..... 91
Gymnetron veroniacus (Germar) and G. villosulm Gyllenhal (Curculionidae) breeding on the same plant. P. F. Whitehead. 48
May/June/July/Aug (Nos. 1548-51)
Rufinism in Irish Pierostichus nigrius (Paykull) (Carabidae). R. Anderson 122
Further northerly records of Dorcus parallelipipedus (L.) (Lucanidae).
H. Kenward. .. 124
A belated corrigendum. [To the note on water beetles: 119: 110 (1983)]
B. Verdcourt ... 118
The continuing westward spread of Scarabodes halensis (F.) (Dytiscidae).
P. F. Whitehead ... 150
The Hydrophilid beetles. Phylogeny, classification and a revision of the genera (Hydrophilidae) Michael Hansson. REVIEW. R. B. Angus 149-150
Sept/Oct/Nov/Dec (Nos. 1552-55)
The distribution and ecology of Hydroplorus glabriusculus Aubé, 1836 (Dytiscidae), with particular reference to the British Isles and its status as a relict species. D. T. Bilton................. 207-220

Insects visiting Arum creticum Boiss. & Heldr., A. concinnatum Schott and A. purpureospathum Boyce. D. C. Drummond & P. M. Hammond 245-251
Micropterus xyloteroides (Jacquelin du Val) (Bostichidae) introduced into Britain. M. L. Luff. .. 253-254
A review of the British species of Rhychaeninae (Curculionidae).
M. G. Morris .. 177-197
Records of modern and subfossil species of Coleoptera from Westray, Orkney. J. Sadler. .. 201-203
A name change in Cylindrothorax Escherich (Meloidae).
R. B. Selander & R. G. Booth 199
Chrysolina oricalca (Müll.) (Chrysomelidae) in Maidenhead, Berks.
B. Verdcourt ... 243
Lucanus cervus (L.) (Lucanidae) in Worcestershire with a hypothesis for its distribution. P. F. Whitehead. 206

THE ENTOMOLOGIST'S RECORD AND JOURNAL OF VARIATION
VOLUME 105 (1993)

Nos. 1-2 (Jan/Feb)
Sycamore: an underrated pabulum for insects and some beetles associated with it. R. A. Jones .. 1-10
A note on Gyrohypus angustatus Stephens and scoticus Joy (Staphylinidae), with a record of the latter from Kingussie, Easternness. J. A. Owen 19-20
Clinetoria splota Hope (Scarabaeidae). A new pest of brinjal in Kumaon Hills of India. M. Arif and M. C. Joshi .. 21
Two notable beetles on Woolwich Common, S. E. London. A. A. Allen 36
Harpalus (Ophonus) melleti Heer and H. (O.) parallellus Dej. (Carabidae) taken together in W. Kent. A. A. Allen .. 39
Nos. 3-4 (Mar/Apr)
Popilia cyanea Hope (Scarabaeidae). A new pest of okra at 1675m altitude in India.
M. Arif and M. C. Joshi .. 69
Pelopitha borealis Paykull (Carabidae) on the Scottish mainland.
I. MacGowan and J. A. Owen .. 75-77
Ptiliidae from the Yap Islands. C. Johnson 79-83
Elostes tricuspus Nyholm (Scirtidae) a notable addition to the beetles of Windsor Forest. A. A. Allen .. 90
Further county records of Aphodius subterraneus (L.) (Scarabaeidae).
A. A. Allen .. 90-91
Nos. 5-6 (May/June)

An association between the spider Theridion pallens, and egg clutches of the two spot ladybird, Adalia bipunctata. M. A. Ransford, M. E. N. Majerus, G. D. D. Hurst and R. Cockburn. 115-117

Ampedus tristis (Linnaeus) (Elateridae) in Britain. J. A. Owen and H. Mendel. 119-124

Scopaeus laevigatus (Gyllenhall) (Staphylinidae) in East Sussex. J. A. Owen. 128

Atomaria scutellaris Motschulsky (Cryptophagidae) at Fishbourne, West Sussex. J. A. Owen. 136-137

First Scottish record of Notiophagus rufofus Curt. (Carabidae) from Hoy, Orkney. R. C. Welch. 142-143

Nos. 7-8 (July/Aug)

Sharing with a ladybird. J. A. Owen. 170

Longitarsus longiseta Weise (Chrysomelidae) a British species, and a new synonymy. A. A. Allen. 175-176

Additional sites for Phyllophaga (Hypopyra) rufula (Erichson) (Staphylinidae) in Surrey, with a review of the other records. J. A. Owen. 187-190

Biblopectus delhersii Guill. (Pselaphitidae) new to Kent. A. A. Allen. 192

On a Cambridgeshire capture of Strangalia revestita (Cerambycidae). A. A. Allen. 197-198

Athelota (Microcota) excelsa Benth. (Staphylinidae) from Nethy Bridge, East Inverness. A. A. Allen. 198

Nos. 9-10 (Sept/Oct)

Hydromerus longicornis Sharp (Dytiscidae) in East Kent. L. Clemens. 220

Some pleasures of the insect world 1992. P. Roper. [Contains beetle records]. 221-226

Pityophthorus lichensteini (Raizberg), (Scolytidae) rediscovered in Aberdeenshire, and a problem partially solved. R. M. Lyszkowski. 229-231

Breeding Gnorimus spp. (Scarabaeidae); a postscript. J. A. Owen. 235-237

Two notable Celydidae on sycamore at Charlton, West Kent (S. E. London). A. A. Allen. 240-241

Nos. 11-12 (Nov/Dec)

Gyrophaea angustata Steph. (Staphylinidae) in the London district. A. A. Allen. 256

A further record of Gyrophopus scoticus (Joy) (Staphylinidae). P. D. Orton. 270

Notes on the inheritance of a scarce form of the striped ladybird, Myzia oblongoguttata Linnaeus (Coccinellidae). M. E. N. Majerus. 271-277

Medon castaneus Gravenhorst (Staphylinidae) at Pyrford, Surrey. J. A. Owen. 278-279

Editorial Policy

Short notes and longer papers about the species of Coleoptera recorded from, or likely to occur in, the British Isles are eligible for publication in The Coleopterist. In addition, the Editor invites more general articles, news items and letters which are of relevance to British coleopterists. Authors who intend submitting papers which are longer than 3,000 words should consult the Editor. Selected papers will be submitted to a referee. Subject areas within the scope of The Coleopterist include: identification, species new to Britain, 1st county records, recording schemes, conservation, ecology, biology, behaviour, sampling and collecting techniques, rearing, specimen preparation, curation, field meeting news and book reviews. Authors will be provided with 20 reprints of papers of two or more pages in length.

There will be three issues of The Coleopterist each year, in April/May (copy date 1st March), August/September (copy date 1st July) and November/December (copy date 1st October). Material accepted for publication will appear in the next issue of the journal, provided that it reaches the Editor before the stated copy date. In this way the majority of submissions will be published within 4 months of receipt. Exceptionally, a paper will be carried over to the subsequent issue. Opinions expressed in The Coleopterist are not necessarily shared by the Editor or the Editorial Panel.

Instructions to Contributors

Manuscripts for publication should be typewritten, double-spaced with 3 cm margins, on one side only of white A4 sized paper. Footnotes should be avoided and pages should be numbered. Only names of species and genera should be underlined. Except for L. (Linnaeus) and F. (Fabricius), species’ authorities should be written in full where a species is first referred to.

Illustrations (figures) should be in black ink, boldly drawn and scaled to allow for a reduction to about 50% of original size. They must be the originals and not photocopies. The ideal position of figures should be indicated in the text. Every effort will be made to care for original artwork but the Editor cannot be held responsible for loss or damage. Material submitted on computer disc should be in ASCII format and accompanied by hard copy. Most disc sizes can be accommodated.

References to journals and books should be in the form: